
Embedded Systems
and Computer Security

ISAE

Rodolphe Ortalo
CARSAT Midi-Pyrénées
(rodolphe.ortalo@free.fr)

rodolphe.ortalo@carsat-mp.fr
http://rodolphe.ortalo.free.fr/ssi.html

Master

ISAE – 2019/2020

2

Overall presentation (1/2)

● Fast paced computer security walkthrough
● Security properties
● Attacks categories
● Elements of cryptography
● Introduction to mandatory security policies

● Embedded systems and security
● Specificities
● Physical attacks (SPA, DPA)
● TPM

● Software development and security
● Security requirements and process
● Static verification and software development tools
● Common criteria / ISO 15408

ISAE – 2019/2020

3

Overall presentation (2/2)

● Case studies
● Wireless networks
● Next generation avionics systems
● Network appliances
● Mobile telephony
● Gaming devices

● Wrap-up (if time permits)
● IDS
● Firewalls
● Tripwire
● Metasploit
● Anti-virus

ISAE – 2019/2020

4

Overall presentation (1/2)

● Fast paced computer security walkthrough
● Security properties
● Attacks categories
● Elements of cryptography
● Introduction to mandatory security policies

● Embedded systems and security
● Specificities
● Physical attacks (SPA, DPA)
● TPM

● Software development and security
● Security requirements and process
● Static verification and software development tools
● Common criteria / ISO 15408

ISAE – 2019/2020

5

A wide perimeter

● Non-technical activities
● Agents habilitation
● Written delegation
● Contracts
● Security awareness
● Teaching

● Protection
● Network
● System
● Applications

● Monitoring
● Intrusion detection
● General monitoring

● Threats awareness
● Attacks
● Vulnerabilities / Audit
● Intrusion testing

● Risk management and
risk evaluation

ISAE – 2019/2020

6

U
K

 N
a
ti
o
n
a
l
C

y
b
e
r

S
e

c
u
ri
ty

 C
e
n
te

r
(N

C
S

C
)

B
o
d
y
 o

f
K

n
o

w
le

d
g
e

ISAE – 2019/2020

7

Overall presentation (1/2)

● Fast paced computer security walkthrough
● Security properties
● Attacks categories
● Elements of cryptography
● Introduction to mandatory security policies

● Embedded systems and security
● Specificities
● Physical attacks (SPA, DPA)
● TPM

● Software development and security
● Security requirements and process
● Static verification and software development tools
● Common criteria / ISO 15408

ISAE – 2019/2020

8

Very specific fault hypothesis

● Malicious faults

● human
● intentional
● with ill will

● direct
● or not

● and malice
● disinformation
● disguise

by Travelling Runes (CC BY-SA 2.0)

ISAE – 2019/2020

9

Basic properties - Confidentiality

● Property of information not to be revealed to
non-authorized users

● prevent users from reading confidential data, unless
they are authorized

● prevent authorized users from communicating
confidential data to non-authorized users

ISAE – 2019/2020

10

Basic properties - Integrity

● Property of information to be accurate

● prevent inadequate alteration (creation or
destruction) of data (either incorrect or performed
by non-authorized users)

● no user should be able to prevent a legitimate
modification

ISAE – 2019/2020

11

Basic properties - Availability

● Property of information to be accessible when it
is needed

● allow access to authorized users for reading or
writing

● no user should be able to prevent authorized users
from accessing information

ISAE – 2019/2020

12

What is information?

● Data
● typed, generated, stored, transmitted, displayed,

etc.
● «Meta-data » : associated to other data and

accessed by computing processes
● identities, names, adresses (user, computer,

process, peripherals, etc.)
● time (date of computation)
● access rights
● etc.

ISAE – 2019/2020

13

Other properties

● Anonymity = confidentiality of user identity
● Privacy = confidentiality of

(personal data + user identity)
● Message authenticity = integrity of (content + sender identity + date + …)
● Document authenticity= intégrité of (content + creator identity + date + …)
● User authenticity = integrity of identity
● « Auditability » = availability of (who, what, when, where, …) of an action
● Sender non-repudiation = availability of (sender identity + …)

+ integrity of content
● Receiver non-repudiation = availability of (receiver identity + …)

 + integrity of content
● Intellectual property protection = confidentiality of content

(+ integrity of container)

ISAE – 2019/2020

14

Overall presentation (1/2)

● Fast paced computer security walkthrough
● Security properties
● Attacks categories
● Elements of cryptography
● Introduction to mandatory security policies

● Embedded systems and security
● Specificities
● Physical attacks (SPA, DPA)
● TPM

● Software development and security
● Security requirements and process
● Static verification and software development tools
● Common criteria / ISO 15408

ISAE – 2019/2020

15

Attackers and their motivations

● Game : exploration (to the limits), extend and apply knowledge,
find new weaknesses, improve security : "hackers"
("pirates" = "crackers")

● Emulation, sectarism : group of hackers : "exploits"
● Vandalism : strengh demonstration, punish : "web defacing", virus,

worms…
● Political, ideological : ex. CCC
● Vengeance
● Profit : espionnage, funds extorsion : unfair concurrency,

organized crime
● Cyber war, terrorism?
● Awareness raising, lobbying
● Abusive protection : ex. SONY

ISAE – 2019/2020

16

Various attack classes

● Passive sniffing
● Interception
● Covert channels
● Cryptanalysis
● Repudiation
● Inference
● Masquerading

● Trapdoors
● Logical bomb
● Trojan
● Virus
● Worm
● Denial of service
● and complex

attacks...

ISAE – 2019/2020

19

2014

● Microsoft OSes expose a significant
vulnerability from Windows 95 onward

● CVE-2014-6332
● 19 years, some BSD code has already revealed

things (probably) older in the past years
● Where is the continuous improvement promised by

commercial companies?
● And why are there still older versions in production

with no fixes (and possibly more bugs)?

● OpenSSL/LibreSSL fork
and some CVE record broken...

ISAE – 2019/2020

20

2015

● Innovations (?) in the automotive industry
● VW
● Jeep

● Reminder
● Physical security > Org. security > Logical security

ISAE – 2019/2020

21

2016

ISAE – 2019/2020

22

2017

● Ransomware fever
● WanaCry, NotPetya
● extending into 2018, then 2019

● Opportunity for a bibliographical ref. too

● Young A., Yung M., Cryptovirology : Extortion-
Based Security Threats and Countermeasures,
17th IEEE Symposium on Security and Privacy,
Oakland, 1996.

ISAE – 2019/2020

23

~2017

● Actually very early 2018, but…
● … press coverage timeline is not always important

● Vulnerabilities involving CPU hardware design
● Speculative execution, data/inst. Caches
● Nicknames : Spectre, Meltdown
● Academic names

● Covert channels (circa. 1987)
● Auxiliary channels (circa 1996)

● Computer apocalypse
● Once again

ISAE – 2019/2020

24

WebAuthn vs. « March-2018! »

ISAE – 2019/2020

26

2019

Local
recipe

ISAE – 2019/2020

27

Machine learning and IR$

My son italian sports car My daughter sports car

ISAE – 2019/2020

28

2019

● Merck
● 2017, NotPetya $870m damage
● Insurance claim

● $150m deductible, $1.65bn cap
● Allianz, AIG

● Denied coverage
● « hostile or warlike » act or an act of terrorism

(excluded)

● $1.3bn claim in court in New Jersey atm for
breach of contract, featuring :

● a big pharmaceutical lab
● a few big insurance companies
● a few US/UK intelligence assessments

● evil foreign hackers, presidents tweets, load of bitcoins, ...

ISAE – 2019/2020

29

Vulnerabilities

Source: cve.mitre.org / nvd.nist.gov

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

CVE

ISAE – 2019/2020

31

Buffer overflows

● Buffer overflows are a notorious problem
● Many exploits are based on them
● They are very easily introduced by simple

programming mistakes

● BTW, very nice reference for applied secure
programming

● http://www.openbsd.org/papers/

Most C examples taken or adapted from
“Puffy at Work”, Henning Brauer, Sven Dehmlow

ISAE – 2019/2020

32

Buffer overflow

● What happens when a function is called (in C)?
● General registers are saved on the stack
● The CPU return address is computed and saved on

the stack
● Function arguments are stored too
● The local variables of the function are also stored in

the CPU stack

● Details are hardware dependent, but the
overall idea is the same

ISAE – 2019/2020

33

Exemple

● A function
void function(char *str) {
char buffer[16];
strcpy(buffer,str);
}

● A buffer overflow
int main(void) {
char *s = "Soy demasiado largo
para este espacio.";
function(s);
}

ISAE – 2019/2020

34

Impact ?

● Program behavior is unpredictable
● Write to unexpected stack sections
● Can we overwrite the return address?
● With carefully chosen values, it is possible to

enforce where the CPU execution returns at
the end of the function

● This could be in code under our control, if we
manage to inject it somewhere in memory (e.g.
on the stack itself)

ISAE – 2019/2020

35

Not always that obvious

void function(int a, int b, int c) {
 char buffer1[8];
 char buffer2[16];
 int *ret;
 ret = buffer1 + GAP_TO_PC_ON_STACK;
 (*ret) += WIDTH_OF_1_CINSTRUCTION;
}

void main() {
 int x;
 x = 0;
 function(1,2,3);
 x = 1;
 printf("%d\n",x);
}

ISAE – 2019/2020

36

Not always that obvious

● GAP_TO_PC_ON_STACK and
WIDTH_OF_1_CINSTRUCTION depend on
the environment

● e.g. : i386 linux 2.4 with gcc 2.95:12, 8

● This program prints 0 NOT 1
● Possibly some kernel insult too

● Might be very interesting to overjump a line
● Especially if there is a call to an authentication

function or access control on that line

ISAE – 2019/2020

37

Prevent buffer overflows

● Be careful writing to buffers
● Length check is mandatory

● Never do any tricks in C that you do not
understand

● Never do any tricks in C

● strcpy and strcat are forbidden
● use strlcpy and strlcat (if available)

ISAE – 2019/2020

38

Format strings

int function(char *user) {
 fprintf(stdout, user);
}

● Problem: what if user is "%s%s%s%s%s%s"

● Most likely: program crash
● If not, program will print memory content

ISAE – 2019/2020

39

How does it work ?

● printf is called as a function
● functions get their arguments passed on the

stack
● each format directive in a format string usually

has a corresponding argument passed along
● for interpreting format directives, printf walks up

the stack, expecting the right arguments to be
there ; but, if they do not...

● Better :
int function(char *user) {
 fprintf(stdout, "%s", user);
}

ISAE – 2019/2020

40

Affected functions

● Any function using a format string

● Printing
● printf, fprintf, sprintf, snprintf, asprintf
● vprintf, vfprintf, vsprintf, vsnprintf, vasprintf

● Logging
● syslog, err, warn

ISAE – 2019/2020

41

SQL Injection
● Building the query naively
statement = "SELECT * FROM users WHERE name = '"+
 userName+"' AND pwd = '"+userPassword+"' ;"

● What if
● userName is « ' OR '1'='1'; -- ' »

● userPassword is not a problem anymore
● userName is « ' OR '1'='1'; DROP TABLES; -- ' »

● The application is not a problem anymore either

● Mitigation
● Prepared statements (+ parse + execute)

SELECT * FROM users WHERE name = ? and pwd = ?;
● External libraries (for auth. or SGDB mapping)
● Parsing or escaping (not recommended)

ISAE – 2019/2020

42

SEL/**/ECT

● Obfuscation techniques are frequently used
● Sample ideas (for SQL injection)

● Abuse of white space or comments
● Fragmentation of the injected query
● HTTP parameters
● Comments (impl. specific ones, special comments)
● Unprobed areas in packets

● Possible lessons
● A full parser for parameter validation
● Intrusion detection is not so easy

● NB: Numerous examples of code encryption or
signature among attackers

ISAE – 2019/2020

43

Overall presentation (1/2)

● Fast paced computer security walkthrough
● Security properties
● Attacks categories
● Elements of cryptography
● Introduction to mandatory security policies

● Embedded systems and security
● Specificities
● Physical attacks (SPA, DPA)
● TPM

● Software development and security
● Security requirements and process
● Static verification and software development tools
● Common criteria / ISO 15408

ISAE – 2019/2020

44

● Cryptology = cryptography + cryptanalysis
● Cryptography (������� = hidden) :

messages non understandable by third parties
● Cryptanalysis : discover secret(s), decypher

● Not to be confused with steganography
(��	
���� = covert) invisible ink

watermark

● Cypher, encryption, decryption, clear (text),
cryptogram

Terminology

ISAE – 2019/2020

45

Preamble (1/2)

● A domain of mathematics which exhibits some
of the most significant advances of the end of
20th century, but

● Mathematical proofs (of strength) are rare
● Ciphers do break
● Implementations do break too
● Few experts (possibly few knowledgeable people)

● Difficult and counter-intuitive
● example: encrypting twice can be dangerous

ISAE – 2019/2020

46

Preamble (2/2)

● Recent and unverifiable release of military
control over cryptology

● Theroetical issues combine with many
implementation difficulties

● examples : random number generators, key
generation, key protection, empty space padding,
etc.

● also at the level of hardware implementation
● covert channels (timing, energy, sound)
● full module verification, e.g. :

● out of order execution
● TLB and caching interactions
● memory (refresh, bugs, etc.) Rowhammer

Spectre

Meltdown

 micro-code? (prediction and not crypto)

ISAE – 2019/2020

47

Encryption (confidentiality)

Encryption Decryption

Encryption key
Kc

Decryption key
Kd

M = clear text C = cryptogram M = clear text

• Notation encryption C = {M}Kc
decryption M = [C]Kd

• Confidentiality
• Without knowing Kd, it must be « impossible » to find M
• It must be « impossible » to find Kd, even knowing C and M

(« (known) clear text » attack)
• It must be « impossible » to find Kd, even knowing C while

choosing M (« chosen clear text » attack)

ISAE – 2019/2020

48

Symmetric ciphers Kc = Kd (= K)

● All known ciphers until 1976 !

● Examples
● DES (1976)

● 56 bits key (+8 parity bits)
● 64 bits blocks

● AES (2002)
● keys of 128, 192 or 256 bits
● 128 bits blocks

ISAE – 2019/2020

49

DES : Data Encryption Standard
(1975)

● Story
● Base from IBM. With improvements from NSA.
● The first algorithm scrutinized by NSA to become public...

thanks to the standardization body.
● 64 bits blocks. Key of 56 bits + 8 bits (ex.: parity)
● Design oriented towards hardware implementation
● 3DES : common (generic) improvement

● 112 bits key
● Huge public cryptology efforts associated to DES
● Feistel cipher family
● Lots of variants (ex.: key-dependent S-boxes)

ISAE – 2019/2020

50

AES : Advanced Encryption Standard
(2001)

● Story
● Selected by NIST from 15 proposals over a 5 year public

selection process
● Originally called Rijndael.

● 128 bits blocks. Keysize of 128, 192 or 256 bits
● Fast in both software and hardware
● Still resistant to open attacks (after a decade)
● Substitution-permutation network family
● Algebraic representation over GF(28)
● Now very wide adoption

● AES-NI instruction set (Intel/AMD)
● Common in most of encrypted flows nowadays

ISAE – 2019/2020

51

Symmetric ciphers modes of operation

M = M1·M2·...·Mn C = C1·C2·...·Cn
● ECB – Electronic Codebook

● Ci = {Mi}K
● Mi = [Ci]K

● CBC – Cipher Block Chaining
● Ci = {Mi ⊕ Ci-1}K
● Mi = Ci-1 ⊕ [Ci]K
● IV sort of M0

● Stream ciphers
● CFB – Cipher Feedback Mode
● OFB – Output Feedback Mode

ISAE – 2019/2020

52

Public key ciphers Kc ≠ Kd

● Knowing Kc, it must be «impossible» to find Kd
● Kd is private (one must know Kd to decrypt)
● Kc is public (everyone can encrypt): notion of public

keys directory
● Ex.: RSA (1976)

● (Probably) based on the (big) numbers prime factorization problem

e·d ≡ 1 mod((p-1)(q-1)) Kc = {pq, e} Kd = {p, q, d}
● Ex.: El Gamal (1985)

● Based on the discrete logarithm computation problem in finite
fields

● y = gx mod p Kc = {x} Kd = {y, g, p}

ISAE – 2019/2020

53

One-time pad : perfect cipher

● The key is a serie of random bits as long as the
message and the algorithm is exclusive-or

● Ci = {Mi}Ki = Mi Ki
● Mi = [Ci]Ki = Ci Ki

● According to information theory (Shannon), this
is a perfect cipher (the key must never be
reused)

● Not very convenient
● Possible

ISAE – 2019/2020

54

exclusive-or : brown paper bag cipher

● C = M K et M = C K
● No security

● Compute C C≫k with k = { 1, 2, ... } and count
identical bytes. The coincidence indice indicates the
key length n (in bytes).

● C C≫n = M M≫n removes the key.
● Find the clear text using intrinsic redundancy of the

original message (1,3 bit of information per byte in
ASCII english for example).

● Few minutes cryptanalysis.
NB: Vigenère polyalphabetical cipher (1523-1596)

ISAE – 2019/2020

55

Strengths of symmetric ciphers

● Speed
● 1 Gb/s in hardware
● 100 Mb/s in software

● « Short » keys
● 80 bits typically to withstand brute force attacks

(today)
● Convenient to encrypt personal files (no need

to share a key)

ISAE – 2019/2020

56

Weaknesses of symmetric ciphers

● To communicate, the secret key must be shared
● sender and receiver have to trust each other, and both

carefully protect the secret key

● How to distribute or renew the key?
● Encrypt the new session key with the old one
● Encrypt the session key with a device-specific key ⇒

trusted keys repository (directory)
● Use a public key algorithm (Diffie-Hellmann)
● Quantum cryptography
● Avian carrier

ISAE – 2019/2020

57

Strengths of public key ciphers

● No trust needed between sender and receiver

● « Easy » key management
● Public directory of public keys or peer to peer exchange
● The private key must « never » be sent

● Allow for new kind of usage : symmetric keys
distribution, electronic signature, certificates, etc.

ISAE – 2019/2020

58

Symmetric keys agreement

● Example : Alice generates a random (symmetric) session
key K and encrypt it with the public key of Bob

● Exemple : Diffie-Hellmann
Alice randomly generates :

n : big prime number with (n-1)/2 prime
and chooses g = generator of a subgroup q de n

(typically, g = 2, q = (n-1)/2)
x (Alice's secret key) is such as loggn < x < q

1. Alice computes Ka = gx mod n and sends (n, g, Ka) to Bob.
2. Bob randomly generates y (Bob(s secret key),

computes Kb = gy mod n, and sends Kb to Alice.
3. Alice and Bob now each compute a session key separately

K = Kb
x mod n = Ka

y mod n = gxy mod n

ISAE – 2019/2020

59

Weaknesses of public key ciphers

● Complex computation
● slow (1 Mb/s)
● long keys (1024 or 2048 bits),

except with elliptic curves (160 bits)

● Specific problems
● Integrity of public keys directory
● Keys lifetime
● Revocation
● Private key sharing necessity?
● Algorithms limitations : e.g. encrypt a small M with RSA

ISAE – 2019/2020

60

Hash functions fingerprint

● « One-way hash function » H
● Fingerprint or hash H(M) has a fixed width n (e.g.: 128 bits)

whatever the length of M
● The probability that 2 different messages M et M' have the

same fingerprint H(M)=H(M') is 1/2n

● Knowing M, it is easy to compute H(M)
● Knowing M, it must be impossible to find M'≠M with

H(M') = H(M)
● Examples: MD5, SHA-1, SHA-256, DES in CBC mode
● Typically, one slices M in blocks m1, m2, ..., mk

h1=F(cte,m1), h2 = F(h1,m2), ..., hk = F(hk-1,mk) = H(M)

ISAE – 2019/2020

61

Application : integrity

● Networking : against man-in-the-middle send
message and fingerprint through distinct channels

● Files : modification detection
● Examples : Tripwire, Samhain
● On a trusted host, compute the fingerprints of stable

files (OS, configuration, main programs, ...) and keep
them in protected storage

● Regularly or in case of doubt, recompute fingerprints to
check them (with a trusted computer)

ISAE – 2019/2020

62

Crypto. up&down example

● 2004
● Collision classes found in MD5
● Extrapolation opportunities to SHA-1

● 2005
● MD5 considered untrusted
● Theoretical doubts with SHA-1 (numerous collisions)

● 2006, 2007, 2008
● Rumors around SHA-1

● 2007 - 2012
● NIST public competition for SHA-3
● Five SHA-3 finalists since 2010-12-09

● BLAKE, Grøstl, JH, Keccak and Skein
● SHA-3 selected in 2012 (Keccak)

ISAE – 2019/2020

63

ortalo@hurricane:~/$ md5sum letter_of_rec.ps order.ps
a25f7f0b29ee0b3968c860738533a4b9 letter_of_rec.ps
a25f7f0b29ee0b3968c860738533a4b9 order.ps
ortalo@hurricane:~/$

http://www.cits.rub.de/MD5Collisions/

ISAE – 2019/2020

64

RSA+AES+SHA3

● The ideal combination or the minimum baseline
for computer security ?

ISAE – 2019/2020

65

Use crypto. correctly

Use proven code instead of rewriting, do not
reinvent the wheel (or the brakes)

● Nintendo Wii
● Used strncmp() instead of memcmp() to compare

the SHA hash

● Works well when one feeds it a signature that
starts with null bytes

● Strings in C are null terminated
● A null byte is only 256/2 random attempts away

on average

ISAE – 2019/2020

66

Other topics (undetailed)

● Steganography
● Watermarking
● Random generators
● Prime generation
● Key escrow
● Voting
● Timestamping
● Destruction
● Protocols

● Cryptanalysis

ISAE – 2019/2020

67

Overall presentation (1/2)

● Fast paced computer security walkthrough
● Security properties
● Attacks categories
● Elements of cryptography
● Introduction to mandatory security policies

● Embedded systems and security
● Specificities
● Physical attacks (SPA, DPA)
● TPM

● Software development and security
● Security requirements and process
● Static verification and software development tools
● Common criteria / ISO 15408

ISAE – 2019/2020

68

Security policy and security model

● The security policy
● « specifies the set of laws, rules and practices that

regulate how sensitive information and other resources
are managed, protected and distributed within a
specific system. » [ITSEC, 1991]

● physical, personnel or procedural, logical
● A security model

● Formal description or mathematical abstraction
● Classical partition between model entities

● active: subjects s
● passive: objects o

ISAE – 2019/2020

69

Discretionary and mandatory policies

● Descretionary policy
● each object o is associated to a specific subject s,

its owner who manipulates access rights at his
descretion

● the owner can freely define and grant such access
rights to himself or another user

● Mandatory policy
● discretionary rules (access rights)
● and : mandatory rules (habilitation level)

ISAE – 2019/2020

70

Access control matrix model

[Lampson 1971]
● State machine : state = (S,O,M)

● O set of objects
● S set of subjects (S⊆O)
● M(s,o) is the set of rights that subject s holds over

object o
● rights belong to a finite set A

ISAE – 2019/2020

71

Multilevel mandatory policy of
Bell-LaPadula (1975)

● (habilitation) level of subjects h(s)
● (classification) level of objects c(o)
● prevents information flow from an object to a lower

level object
● prevent any subject from gaining information from an

object which level is higher than their habilitation

Subject 1

Subject 2

Object a

Object b

Top secret

Secret

Confidential

Unclassified

<

<

<

TS

C

NC

readS

ISAE – 2019/2020

72

Bell-LaPadula Model

● classification cl : totally ordered set
● compartment C : set of categories
● n=(cl,C), n'=(cl',C') : n≤n' ⇔ cl≤cl' et C⊆C' (treillis)
● simple property

s∈S, o∈O, read∈M(s,o) ⇒ c(o)≤h(s)
● ✶-property

s∈S, (o,o')∈O2, read∈M(s,o) ∧ write∈M(s,o')
⇒ c(o)≤c(o')

ISAE – 2019/2020

73

Other policies and models

● Non-interference
● Non inference
● HRU
● Clark-Wilson
● Chinese wall
● RBAC
● etc.

... for further studies.

ISAE – 2019/2020

74

Weaknesses of BLP and Biba

● Weaknesses
● Overclassification degrades (security) information

continuously (or out-of-model declassification
procedures are introduced)

● The model does not represent all information flows
and does not take into account covert channels

● Biba (integrity) policy
● dual of BLP for integrity assurance
● rights = { write, read, invoke }
● similar weakness : information integrity level

degrades continuously

ISAE – 2019/2020

75

Policy, protection and access control

● Security rules are enforced via security mechanisms
(hardware or software)

● Easy to imagine for rules like « it is permitted to... » or
« it is forbidden that... » – protection mechanisms –
privileged instructions, memory access control, file
access control, etc.

 authorization
● Harder for rules like « it is mandatory that... » or « it is

recommended that... »
 action triggers, ressource management

ISAE – 2019/2020

76

Overall presentation (1/2)

● Fast paced computer security walkthrough
● Security properties
● Attacks categories
● Elements of cryptography
● Introduction to mandatory security policies

● Embedded systems and security
● Specificities
● Physical attacks (SPA, DPA)
● TPM

● Software development and security
● Security requirements and process
● Static verification and software development tools
● Common criteria / ISO 15408

ISAE – 2019/2020

77

Embedded systems characterization

● Various designation (different real cases)
● real-time
● critical
● embedded (in a vehicle)

● autonomous / distant from the power plug
● hidden / distant from any user
● distributed (communicating?)
● integrated (in a hardware platform)

● other? : lost, stolen, fallen from the shelf (re-
purposed...), numerous&similar?

● Up to now, not so different from a regular
computer (esp. from the security point of view)

ISAE – 2019/2020

78

Inventory attempt

● RAID cards
● coprocessors
● chronotachygraph (?)
● (artificial) satellites
● rockets
● automatic pilots

VAL, train?
● switch/firewall AFDX

(avionics)
● cars?

● smart cards
● switches/routers
● game consoles
● GPS receivers
● ADSL+TV boxes
● mobile phones
● digital video recorders
● home automation?
● (industrial) robots
● energy meters

ISAE – 2019/2020

79

Domains of application

● Industry
● Industry automation and robotics
● Energy (smart grid)

● Vehicles
● Avionic domain
● Space domain
● Ground-transport domain

● Consumer electronics
● mobile telephony
● video games
● Internet acces (high speed)
● media broadcasting

ISAE – 2019/2020

80

Multiple security requirements

● Supplier/content protection
● GSM phone
● Media distribution

● ES environment protection
● The vehicle itself, its passengers
● Vehicle ressources (e.g. satellite)

● ES owner protection
● ES self protection

● smart card, cryptographic chipset
● And the protection of an embedded information

system, i.e. several networked ES

ISAE – 2019/2020

81

Evolution

from
● Some security functionalities

to
● Security management at the system design

and architectural level
(both hardware and software)

Security of industrial systems is getting a lot of
attention recently (and then?)

ISAE – 2019/2020

82

Motivations for evolution

● Widening attack range
● logical, physical, auxiliary channel

● Limited computing resources
● especially wrt. computational needs (crypto.)

● Limited ressources in general
● especially energy (storage also)

● A need of modularity/flexibility
● fast moving components and standards

● Multiple different security functionalities
expected by users

ISAE – 2019/2020

84

Challenges
● complexity

● embedded software gets more and more complex
● efficient languages (C, C++) are not specifically

secure
● extensibility

● Java, .NET: designed for extension
● J2ME, JavaCard too
● dynamic updates (with code execution)
● mise à jour (exécution) dynamique

● networking
● WiFi, bluetooth
● Internet

Note : Nothing really specific
to embedded systems...

ISAE – 2019/2020

85

Overall presentation (1/2)

● Fast paced computer security walkthrough
● Security properties
● Attacks categories
● Elements of cryptography
● Introduction to mandatory security policies

● Embedded systems and security
● Specificities
● Physical attacks (SPA, DPA)
● TPM

● Software development and security
● Security requirements and process
● Static verification and software development tools
● Common criteria / ISO 15408

ISAE – 2019/2020

86

Physical attacks

● Direct hardware attack
● micro-probing
● substrate reconstruction
● debugging interface access (JTAG, etc.)

● Difficulties
● Costly (with respect to other attacks)
● Destructive
● Alternative attack precursor

● Primary target: cryptographic chipsets

ISAE – 2019/2020

87

Auxiliary channels

● Timing (temporal) analysis
● Power analysis

● SPA: simple power analysis
● DPA: differential power analysis

● Impact
● Find correlation between measurements and secret

keys
● Very efficient (DXX)
● costly counter-measures

● rigourous, counter-intuitive, patented

ISAE – 2019/2020

88

Power analysis

● References (most pictures reused)
Elisabeth Oswald (Univ. Bristol) - dpabook.org

Josh Jaffe & P.Kocher (timing analysis)
(Cryptography Research, Inc.)

ISAE – 2019/2020

89

Power analysis typical setup
(C

C
)

h
tt

p
:/

/e
n
.w

ik
ip

e
d
ia

.o
rg

/w
ik

i/F
ile

:D
iff

e
re

n
ti
a
l_

p
o
w

e
r_

a
n
a
ly

s
is

.s
v
g

ISAE – 2019/2020

90

S
P

A
 E

x
a
m

p
le

ISAE – 2019/2020

91

SPA Example

ISAE – 2019/2020

92

Alternative attacks

● DPA
● Differential power analysis
● Much less sensitive to noise disruptions

● Fault injection
● induce normal behavior perturbation
● may allow deduction of secret information

● EMA
● electromagnetic analysis
● best of eighties (TEMPEST protection)
● remastered

ISAE – 2019/2020

93

NACHOS - https://xkcd.com/654/

ISAE – 2019/2020

94

Physical protection

● Secure computing
● hardware
● software
● hybrid

● Attack resistance
● Trusted Computing

● e.g.: TPM (TCPA)

ISAE – 2019/2020

95

Overall presentation (1/2)

● Fast paced computer security walkthrough
● Security properties
● Attacks categories
● Elements of cryptography
● Introduction to mandatory security policies

● Embedded systems and security
● Specificities
● Physical attacks (SPA, DPA)
● TPM

● Software development and security
● Security requirements and process
● Static verification and software development tools
● Common criteria / ISO 15408

ISAE – 2019/2020

96

TPM

● Trusted Platform Module
● from the Trusted Computing Group (TCG)

● http://www.trustedcomputinggroup.com/
● « ... open, vendor neutral, industry standards for

hardware-enabled trusted computing and security... »
● Promoters (2008)

● AMD, Fujitsu, HP, IBM, Infineon, Intel, Lenovo, Microsoft,
Seagate, Sun, Wave

● Contributors, Adopters... (140 members)
● successor of TCPA (and competing Palladium?)
● established in 2003

ISAE – 2019/2020

97

TCG Architecture

Very generic reference architecture

ISAE – 2019/2020

98

A TPM with RTR+RTS

ISAE – 2019/2020

99

Fundamental Trusted Platform Features

● Protected capabilities
● shielded locations (register, memory, etc.)
● and: key management, RNG, sealing, etc.

● Attestation
● by the TPM, to the platform, of the platform,

authentication of the platform
● Integrity Measurement, Logging and Reporting

● metrics of integrity and digests (PCR)
● recommended logging (optional)
● attesting measurements
➔ independent process to evaluate integrity (platform cannot lie)

ISAE – 2019/2020

100

Use on Linux
http://www.grounation.org/index.php?post/2008/07/04/8-how-to-use-a-tpm-with-linux

● Enable TPM in BIOS / Load drivers
● Install tpm-tools and TrouSers
● Take Ownership (once and for all)
● (Compile) Install and setup TrustedGRUB

● Restart successfully
● Contemplate PCRs

● PCR 0 to 3 for the BIOS, ROMS...
● PCR 4 contains MBR information and stage1
● PCR 8,9 contains bootloader information stage2 part1,2
● PCR 12 contains all commandline arguments from

menu.lst and those entered in the shell
● PCR 13 contains all files checked via the checkfile-routine
● PCR 14 contains all files which are actually loaded (e.g.,

Linux kernel, initrd, modules...)
● PCR 15 to 23 are not used

ISAE – 2019/2020

101

Use on Linux
http://www.grounation.org/index.php?post/2008/07/04/8-how-to-use-a-tpm-with-linux

● Use some TPM features
● Add some « checkfile » or « pcr_verify » to grub.lst

/somehwere/check.file

 fedb1cff009e115f7f5f7b4533667a787798832d (hd0,1)/test1.file

 485214eab2de87284de9d4e323e428bf60e0aa77 (hd0,1)/grub-0.92.tar.bz2

 a6e171e989849dd44735a513c4270a0837c09174 (hd0,1)/test2.file

● Restart successfully
● NB : Do not forget the

● Owner password
● Storage Root Key (SRK) password
● or stick to the precise software installed at setup time

● with security verifications still enforced
● and if you disabled boot on CD/DVD/USB of course...

● Extend to :
● TPM KeyRing
● Ecryptfs PKI...

ISAE – 2019/2020

102

Trusted Computing Group (TCG)
and Trusted Platform Module (TPM)

http://www.trustedcomputinggroup.com/

ISAE – 2019/2020

103

Other issues with TPM

● « (...) The TPM has the EK generated before the end
customer receives the platform. (...)
1. The EK MUST be a 2048-bit RSA key (...)

c. The PRIVKEY SHALL exist only in a TPM-
shielded location (...) »

● TPM Main Part 1 Design Principles, Specification, Version
1.2, Level 2 Revision 103, 9 July 2007.
Section 5 (lines 1004-1040).

● « ... If it's good enough for the NSA, it should be good
enough for you. »

● Roger L. Kay, Trusted Computing is Real and it's Here, 2007.
● Trusted Computing or « Treacherous Computing » ?

● (several) anonymous

ISAE – 2019/2020

104

Contrast with UEFI

● Microsoft Secure boot
● The initial master key is controlled by Seattle
● And it delegates...

● Side note
● Fortunately, there is JTAG...

ISAE – 2019/2020

105

Overall presentation (1/2)

● Fast paced computer security walkthrough
● Security properties
● Attacks categories
● Elements of cryptography
● Introduction to mandatory security policies

● Embedded systems and security
● Specificities
● Physical attacks (SPA, DPA)
● TPM

● Software development and security
● Security requirements and process
● Static verification and software development tools
● Common criteria / ISO 15408

ISAE – 2019/2020

106

Introductory programmer comment

http://lwn.net/Articles/529496/

BTW, Cyanogen fix: http://review.cyanogenmod.org/#/c/28568/

ISAE – 2019/2020

107

Problem to address (with respect to
security requirements definition)

● Best ROI when done at application design phase
● When considered at all, they tend to be

● general lists of security features
● password, firewalls, antivirus, etc.

● implementation mechanisms ≠ security requirements
● intented to satisfy unstated requirements

● authenticated access, etc.
● Exist in a section by themselves (copied from a generic set)

● no elicitation or analysis process, no adaptation to the target
● Significant attention is given to what the system should do

● little is given to what it should not do (in req. eng.)
● Priority is not given to security (wrt ease of use for example)

ISAE – 2019/2020

108

Note on security updates

● How can we manage software vulnerabilities?
● Wait until they are exploited by an attacker
● Quickly provide a patch that should correct the

problem (without introducing another one)
● Whine because system administrators do not install

patches fast enough

● Astonishingly it is very popular
● All serious editors do that
● Users feel more secure (still?)

Improving security Using Extensible Lightweight Static Analysis, David Evans and
David Larochelle, IEEE Software, January/February 2002.

ISAE – 2019/2020

109

In other words

● It is not enough to apply patches to secure a system
● Also, you cannot rely only on firewalls or antivirus (or IT

security tools)
● Security objectives of a piece of software should be

identified
● Security implies a change in point of view

● e.g.: it must not work
● unavailable is better than destroyed
● which (computer) is saved first ?

● i.e. : What do you really want exactly ?

ISAE – 2019/2020

110

Drones firmware security update

● DJI firmware update
● february 2015
● Phantom 2
● Phantom 2 Vision (+)

● integrates
● a no-fly zone
● 15.5 miles radius
● around the...

● White House
● guess why ?

● et l'Elysée au fait ?

ISAE – 2019/2020

111

Speaking of point of view...

“Countering the Threat of Unauthorized Drones with ...”

ISAE – 2019/2020

112

Another view on project lifecycle

● Detailed needs ?
● Specs ?
● Contracts
● Development
● Integration
● Validation
● Exploitation
● Maintenance
● Disposal ?

Security policy consideration

Security specification

Security validation/configuration

Monitoring / Management

Quid ?

ISAE – 2019/2020

114

Risk analysis

1.Identify assets and their value ($$)
2.Define assets priority
3.Identify vulnerabilities, threats and potential

damages
4.Define threats priority
5.Optimize counter-measures selection

● Inherently qualitative (human/expert opinion)
● Applicable to organization, system, project
● Several methods available

● MARION, MEHARI, EBIOS, etc.
● HAZOP, FMEA, ISO31000, etc.

ISAE – 2019/2020

115

Pros (my view)

● Identification of assets and their relative values
● Assets value offers an opportunity to budget

realistically (for protection)
● Is understandable by end users

● Quite easier than assembly language exploits or
cryptographic hash functions

● Risk management alternatives
● Transfer (insurance, state, etc.)
● Acceptance (life is deadly after all)
● Reduction (work, work, work, work, ...)
● Avoidance (just do it the other way)

● Management could express clear priorities

ISAE – 2019/2020

116

Cons (my view)

● Threat determination is an oracle problem
● May be used to demonstrate that (any) risk is

(already) managed
● Some forgotten successes of risk management

● Lehman-Brothers financial risk exposure
● Greek debt control

● Qualitative also means manipulable
● Relies a lot on best practices or risks lists

● Fuels paranoia and ready-made useless tools
● Does not help target real assets

● Management rarely wants to decide
● Sometimes does not end well morally speaking

● For example : product lifetime optimization
(NB : Inherently viewpoint-based)

ISAE – 2019/2020

117

Threats and use-case examples

● Trusted Computing Group
● Mobile phone TPM use-case scenarios
● (Name,) Goal

● Threats

● Platform integrity
● Ensure that device possess and run only authorized

operating system(s) and hardware
● Logic of device firmware modified
● Device hardware modified
● Device functions in a manner other than intended by the

manufacturer
● Device modified to broadcast false identification (IMEI)

ISAE – 2019/2020

118

Threats and goals examples

● Device authentication
● Assist user authentication
● Prove identity of device itself

● Identity spoofing to get unauthorized access to services
● Identity no longer bound to the device
● Theft of device
● Device tracking

● Robust DRM implementation
● Service and content providers need assurance that

the device DRM is robust
● SIMLock / Device personalisation

● Ensure that a mobile device remains locked on a
particular network

OLD

AND THEN?

ISAE – 2019/2020

119

Last use-case examples (for info.)

● Secure software download
● Secure channel between device and UICC

(UMTS Integrated Circuit Card)
● Mobile Ticketing
● Mobile Payment
● Software use

● User-available predefined software use policies
● Proving platform and/or application integrity to

end user
● User data protection and privacy

OLD

AND THEN?

ISAE – 2019/2020

121

References

● DHS « Build Security In »
● https://buildsecurityin.us-cert.gov/

• The Addison-Wesley Software Security Series
•http://www.softwaresecurityengineering.com/series/

• CERT/CC
• http://www.cert.org/

• « Smashing the Stack for Fun and Profit. »
• Aleph One, Phrack Magazine 7, 49 (1996)
File 14 of 16.

• OpenBSD
● http://www.openbsd.org/papers/

ISAE – 2019/2020

122

Some real programming

● Presentation based on work from real
programmers in the neighbourhood

● First, sources :
● Matthieu Herrb & lots of OpenBSD « good

programming » examples
● Vincent Nicomette and Eric Alata for some

« details »

ISAE – 2019/2020

123

Now real programming (prereq.)

#include <stdio.h>
void copie(char * s) {
 char ch[8] = "BBBBBBBB" ;
 strcpy(ch,s) ;
}
int main(int argc, char * argv[]) {
 copie(argv[1]) ;
 return(0);
}

AAAAAAAAAAAA[system_adr][exit_adr][shlibc_adr]

Bash$./a.out 'perl -e 'print "A"x12 . 0xb7ee1990 . 0xb7ed72e0 .
0xb7fcc0af' '
sh-3.1$

ISAE – 2019/2020

124

Now real programming

● Number One : buffer overflow with string functions

strcpy(path, getenv("$HOME"));
strcat(path, "/");
strcat(path, ".foorc");
len = strlen(path);

● strcat(), strcpy()
● no verification on buffer size, dangerous : do not use

● strncat(), strncpy()
● leave strings non terminated, very difficult to use correctly

● strlcat(), strlcpy()
● May truncate strings, but probably easier to use

http://homepages.laas.fr/matthieu/cours/mh-prog-defensive.pdf

ISAE – 2019/2020

125

str{,n,l}{cpy,cat} practical usage

STRCAT(3) Linux Programmer's Manual STRCAT(3)

NAME

 strcat, strncat - concatenate two strings

SYNOPSIS

 #include <string.h>

 char *strcat(char *dest, const char *src);

 char *strncat(char *dest, const char *src, size_t n);

No strlcat() on Linux ; so, from the BSDs (more precisely OpenBSD) :

 size_t strlcpy(char *dst, const char *src, size_t dstsize);
 size_t strlcat(char *dst, const char *src, size_t dstsize);

No strlcat on Linux...

ISAE – 2019/2020

126

strncat() is difficult to use

strncpy(path, homedir, sizeof(path) – 1) ;
path[sizeof(path) – 1] = '\0' ;
strncat(path, "/", sizeof(path) – strlen(path) – 1) ;
strncat(path, ".foorc", sizeof(path) – strlen(path)
 – 1) ;
len = strlen(path) ;

Note (on Linux) : g_strlcpy() and g_strlcat() exist in
glib-2.0

Note (on BSD) : see next slide (Yeah !!!)
Additional note: C11 has removed gets() (was

deprecated in C99) replaced by gets_s()

ISAE – 2019/2020

127

strl*() look better

strlcpy(path, homedir, sizeof(path)) ;
strlcat(path, "/", sizeof(path)) ;
strlcat(path, ".foorc", sizeof(path)) ;
len = strlen(path) ;
● May truncate, but no overflow

● Add checks for non testing code :
strlcpy(path, homedir, sizeof(path)) ;
if (len >= sizeof(path)) return (ENAMETOOLONG) ;
strlcat(path, "/", sizeof(path)) ;
if (len >= sizeof(path)) return (ENAMETOOLONG) ;
strlcat(path, ".foorc", sizeof(path)) ;
if (len >= sizeof(path)) return (ENAMETOOLONG) ;
len = strlen(path) ;

ISAE – 2019/2020

128

C11 Annex K (ISO/IEC 9899:2011)

● C11 Ann.K « Bounds-checking interfaces » defines
alternative versions of standard string-handling
functions (from Microsoft)

● strcpy_s(), strcat_s(), strncpy_s() and strncat_s()
● ie :

errno_t strcpy_s(
char * restrict s1,
rsize_t s1max,
const char * restrict s2
);

● See also : ISO/IEC TR24731-1:1999 and
ISO/IEC:TR24731-2:2010 …

● Note : wchar_t

ISAE – 2019/2020

129

R
a

w
 C

11
 e

x
a

m
p

le
fr

o
m

 h
tt

p
s
:/

/w
w

w
.s

e
c
u
re

c
o
d
in

g
.c

e
rt

.o
rg

/

ISAE – 2019/2020

130

Time of check, time of use

● How to create a temp. file in /tmp without
overwriting an existing file ?

/* Generate random file name */
name = mktemp("/tmp/tmp.XXXXXXXXXX");
/* verify file does not exist */
if (stat(name,&statbuf) == 0) {
 return EEXISTS;
}
/* ok, open it */
fd = open(name, O_RDWR);

● Opens a possible race condition with a
concurrent process

● mktemp() deprecated in POSIX.1 (2011)

ISAE – 2019/2020

131

Options

● Use mkstemp() to replace both system calls
fd = mkstemp("/tmp/tmp.XXXXXXXXXX") ;

● Use O_CREAT | O_EXCL, open() flags that
trigger an error if the file already exists

fd = open(name, O_CREAT | O_EXCL);

● Note the difference between fopen() and open() return
types (FILE* vs. int or streams vs. file descriptors)

ISAE – 2019/2020

132

Arithmetic overflows

n = getIntFromUser();
if (n<=0 || n*sizeof(struct item) > BUFMAX){
 return EINVAL;
}
● If n is big enough, the condition will not be true
● Use :
n = getIntFromUser();
if (n<=0 || n > BUFMAX/sizeof(struct item)){
 return EINVAL;
}

ISAE – 2019/2020

133

Arithmetic overflows

n = getIntFromUser();
if (n<=0){
 return EINVAL;
}
data = (struct item *)
 malloc(n * sizeof(struct item));
if (data == NULL) {
 return ENOMEM;
}
● If n is big enough, overflow occurs and a small

memory allocation is done
● opening the path to a memory overflow

● Use calloc() !
data = (struct item *)
 calloc(n, sizeof(struct item));

ISAE – 2019/2020

134

Format strings issues

● Many standard display functions use a format
for printing : printf(), sprintf(), fprintf(), …

● Two variants exist, with and without format
strings : printf("%s", ch) or printf(ch)

● What happens when you give « %x » to printf ?
● printf() gets its next argument from the stack

● When user input is passed to such functions, it
can generate this kind of situations

● This kind of situation may allow to access
areas of memory for reading (sometimes for
writing)

ISAE – 2019/2020

135

Example

#include <stdio.h>
int main()
{
 char * secret = "polichinelle";
 static char input[100] = {0};
 Printf("Enter your name: ");
 scanf("%s", input);
 printf("Hello ");printf(input);printf("\n");
 printf("Enter your password: ");
 scanf("%s",input);
 if (strcmp(entree,secret)==0) {
 printf("OK\n");
 } else {
 printf("Error\n");
 }
 return 0;
}

ISAE – 2019/2020

136

Example

● Normal use of the program
bash$./a.out
Enter your name: Jack
Hello Jack
Enter your password: ripper
Error

● « Abuse » of the program
bash$./a.out
Enter your name: %p%s
Hello 0x08049760polichinelle

● Allows to walk the stack and access internal
program data

ISAE – 2019/2020

137

Practical recommendations

● Design first
● Often broken and insecure by design

● Obscurity does not help
● Exploits against closed source may be just as easy

as against open source
● Obfuscation primarily works for people writing code,

not crackers
● Quality is security

● Most security problems are simple bugs
● There is no security plugin
● No ROI for security

● But shorter test cycles
● Less bugs, so less time spent fixing them
● And usually better efficiency

ISAE – 2019/2020

138

Practical recommendations

● Most code should be simple and boring
● Easier to audit
● Already formatted
● Clever code is almost always wrong

● Fix a bug everywhere
● Even automate for checking it

● Check return codes
● Design your APIs right...
● Understand semantics

● File descriptors
● Inheritance over fork
● Access rights only checked on open()

● Signal handlers are complex
● Simple rule : only set volatile atomic flags in them

ISAE – 2019/2020

139

Practical recommendations

● Most security issues come from abstraction layers
violation (audit these cases)

● Hidden variables
● Concurrency
● Overflows
● Flow control on error

● All user input must be checked
● Positive checks
● Everything not static is like user input

● Be careful with optimizations

● There is no secure language or environment
● Java does not suffer from simple buffer overflows but has

integer overflows, logic errors, etc.

ISAE – 2019/2020

140

Overall presentation (1/2)

● Fast paced computer security walkthrough
● Security properties
● Attacks categories
● Elements of cryptography
● Introduction to mandatory security policies

● Embedded systems and security
● Specificities
● Physical attacks (SPA, DPA)
● TPM

● Software development and security
● Security requirements and process
● Static verification and software development tools
● Common criteria / ISO 15408

ISAE – 2019/2020

141

Capabilities of Security Analyzers

● Examining Calls to Potentially Insecure Library Functions
● Detecting Bounds-Checking Errors and Scalar Type Confusion
● Detecting Type Confusion Among References or Pointers
● Detecting Memory Allocation Errors
● Detecting Vulnerabilities that Involve Sequences of Operations

(Control-Flow Analysis)
● Data-Flow Analysis (reducing false alarms)
● Pointer-Aliasing Analysis (primarily useful for the former)
● Customizable Detection Capabilities

ISAE – 2019/2020

142

Classes of Tools

● Source code analysis tools
● see below

● Penetration testing tools
● Ports scanners

● e.g. nmap
● Vulnerability scanners

● e.g. Nessus, ISS's Internet Scanner
● Application scanners
● Web application assessment proxy

ISAE – 2019/2020

143

Analyzer mechanics

● « simple » searching (grep-like)
● lexical analysis
● abstract syntax tree (AST) construction

(parsing)
● advanced work (may) start here

● global / local analysis
● type calculus, logical reasoning, range calculus
● false alarms reduction techniques
● IDE integration, specification-based verification
● etc.

● Wikipedia has a pretty good reference and tools collection list
● Under « static program analysis » (en)
● And « list of tools for static code analysis » (en)
● Apparently up to date and with the old things too…

ISAE – 2019/2020

144

Examples (somehow outdated)

● Splint - http://www.splint.org/
● evolution of good-old lint
● lightweight static analysis

● smatch - http://smatch.sourceforge.net/
● source checker focused on linux kernel code
● links with sparse
● Died, and resurrected : TBD again

● ASTREE - http://www.astree.ens.fr/
● LIENS, started Nov. 2001
● C programs
● real-time embedded software static analyzer
● based on abstract interpretation

ISAE – 2019/2020

145

Splint – Quotes from the authors

Improving security Using Extensible Lightweight Static Analysis, David Evans
and David Larochelle, IEEE Software, January/February 2002.

● A tool knowing common
vulnerabilities

● Exploiting annotations in
programs

● Automated checking

ISAE – 2019/2020

147

Annotation examples

Library functions :
char *strcat (/*@returned@*/ char *s1, char *s2)
 /*@ensures s1:taintedness =

 s1:taintedness | s2:taintedness@*/;

char *strcpy (char *s1, const char *s2)
 /*@requires maxSet(s1) >= maxRead(s2)@*/
 /*@ensures maxRead(s1) == maxRead(s2)

/\ result == s1@*/;

ISAE – 2019/2020

148

False alarms

ISAE – 2019/2020

149

Smatch

● http://repo.or.cz/w/smatch.git
● Smatch uses Sparse as a C parser
● validation/validation_sm_buf_size6.c

ISAE – 2019/2020

150

Source C test fragment

#include "check_debug.h"

void *malloc(int size);

int function(void)
{

int *p;
int array[1000];

p = malloc(4000);

__smatch_buf_size(p);
__smatch_buf_size(&p[0]);
__smatch_buf_size(array);
__smatch_buf_size(&array);
__smatch_buf_size(&array[0]);

return 0;
}

Used to test the
analyzer itself

ISAE – 2019/2020

151

Test fragment output

/*
 * check-name: smatch buf size #6
 * check-command: smatch --spammy -I.. sm_buf_size6.c
 *
 * check-output-start
sm_buf_size6.c:12 function() buf size: 'p' 1000 elements, 4000 bytes
sm_buf_size6.c:13 function() buf size: '&p[0]' 1000 elements, 4000 bytes
sm_buf_size6.c:14 function() buf size: 'array' 1000 elements, 4000 bytes
sm_buf_size6.c:15 function() buf size: '&array' 1000 elements, 4000 bytes
sm_buf_size6.c:16 function() buf size: '&array[0]' 1000 elements, 4000 bytes
 * check-output-end
 */

ISAE – 2019/2020

152

ASTREE

● Example of abstract interpretation application
to software analysis

● Properties / objectives
● sound (all possible errors)
● automatic (no invariants required)
● efficient
● domain-aware, parametric, modular, extensible
● hence, very precise

● Application / achievements
● A340 fly-by-wire control software (C, 132kloc, 2003)
● A380 electric flight control codes (2004)
● C version of ATV automatic docking software (2008)

ISAE – 2019/2020

153

Abstract interpretation

● Formalize the idea of approximation
● to bring the correctness problem at range

● Application of abstraction to
● the semantics of programming languages
● static program analysis

● competes with
● deductive methods
● model-checking
● type inference

ISAE – 2019/2020

154

A glance at the theory (1/3)
Simple abstraction

Abstract Interpretation Based Formal Methods and Future Challenges, Patrick Couzot, in
Informatics, 10 Years Back - 10 Years Ahead, R. Wilhelm (Ed.), LNCS 2000, 2001.

ISAE – 2019/2020

155

A glance at the theory (2/3)
Effective abstraction

Abstract Interpretation Based Formal Methods and Future Challenges, Patrick Couzot, in
Informatics, 10 Years Back - 10 Years Ahead, R. Wilhelm (Ed.), LNCS 2000, 2001.

ISAE – 2019/2020

156

A glance at the theory (3/3)
Information loss and checking

Abstract Interpretation Based Formal Methods and Future Challenges, Patrick Couzot, in
Informatics, 10 Years Back - 10 Years Ahead, R. Wilhelm (Ed.), LNCS 2000, 2001.

ISAE – 2019/2020

157

Operation report

● Specialisation to synchronous avionics code
● produced from SCADE, no scheduling
● intensive use of booleans and floating points
● existence of digital filters

● Full alarm investigation needed
● 200kloc (pre-processed) C, 10 000 globals, 6h
● 467 alarms, 327 after options
● « partitioning directive »: 11 alarms remaining
● « true alarm »

● 0x80000000 defaults to unsigned int per ISO-C
● write (-2147483647-1) ?

Experimental Assessment of Astrée on Safety-Critical Avionics Software, Jean Souyris,
David Delmas, in proceedings of the 26th International Conference on Computer Safety,
Reliability, and Security (SAFECOMP 2007), september 18-21 2007.

ISAE – 2019/2020

158

Some concluding remarks

● Complete verification by formal methods
● model checking / deductive methods
● very costly in human ressources
● not likely to scale up

● Partial verification by static analysis
● cost effective

● Program debugging
● remains the prominent industrial « verification »

method
● well know deficiencies: uncompleteness, cost

● NB: Fault removal, but also fault prevention, fault
tolerance and fault forecasting

ISAE – 2019/2020

159

Overall presentation (1/2)

● Fast paced computer security walkthrough
● Security properties
● Attacks categories
● Elements of cryptography
● Introduction to mandatory security policies

● Embedded systems and security
● Specificities
● Physical attacks (SPA, DPA)
● TPM

● Software development and security
● Security requirements and process
● Static verification and software development tools
● Common criteria / ISO 15408

ISAE – 2019/2020

160

« Criteria »

● Genealogy
● TCSEC – Trusted Computer System Evaluation

Criteria – DoD 1985 (Orange book) and TNI –
Trusted Network Interpretation of the TCSEC (Red
book)

● ITSEC – Information Technology Security
Evaluation Criteria (EEC 1991)

● JCSEC, CTCPEC, etc.
● CC – Common Criteria also known as

ISO15408 (ISO standard since ~2000)

ISAE – 2019/2020

162

Orange book : criteria (1/2)

● Security policy
● discretionary access

control
● Object reuse control
● Labels
● Mandatory access

control
● Imputability (?)

● Identification and
authentication

● Trusted path
● Audit

● Operational
assurance

● System architecture
● System integrity
● Covert channels

analysis
● Installation

management
● Secure recovery

ISAE – 2019/2020

163

Orange book : criteria (2/2)

● Life cycle assurance
● Security tests
● Specification and

verification
● Configuration

management
● Secure distribution

● Documentation
● User guide
● Secure installation

manual
● Tests documentation
● Security management

documentation

ISAE – 2019/2020

164

ITSEC - Criteria

● Functionality classes
● Assurance – Correctness : E1 to E6
● Assurance – Effectiveness

● Construction
● Suitability of functionality
● Binding of functionality
● Strength of mechanisms
● Construction vulnerability assessment

● Operation
● Ease of use
● Operational vulnerability assessment

ISAE – 2019/2020

165

Nice quote on criteria

● CC – ISO 15408
● Common Criteria

« For the most part, the protection profiles define
away nearly all of the interesting threats that
most systems face today. » in Fedora and
CAPP, lwn.net, 10 dec. 2008.

Not the end of story however (oldest standard).

ISAE – 2019/2020

166

The Blowfish

● « Compared to many of the options found in
Linux, unveil() is an exercise in simplicity. »,
J. Corbet, 767137.

● privsep +pledge():
● stdio, rpath, wpath, inet, dns, getpw, proc, exec, ...

● Reducing ROP gadgets (RETGUARD) as (yet)
another mitigation

● Only two remote holes in the default install, in a
heck of a long time!

● https://man.openbsd.org/
« man man, man », D. Clar, circa 1991...

● Not even a word about pf(4) in the « security »
page.

ISAE – 2019/2020

167

Overall presentation (2/2)

● Case studies
● Wireless networks
● New generation avionics systems
● Network appliances
● Mobile telephony
● Gaming devices

● Wrap-up (on-demand)
● IDS
● Firewalls
● Tripwire
● Metasploit
● Anti-virus

ISAE – 2019/2020

168

Now

Photo: resp.

ISAE – 2019/2020

169

Still now

Photo: Zoox

Photo: Mark Harris

Photo: Andy Greenberg for Wired

Photo: Whitney Curtis for Wired

Automatic Taxi vs. Jeep Cherokee: 0wned!

ISAE – 2019/2020

170

Toaster hacking

Une suggestion pour sauver
l'électroménager français :

la balance espion

Fridge

Already done!

ISAE – 2019/2020

171

Check too

● Abusive protection is the latest fashion...

Photo: Corbis

ISAE – 2019/2020

172

Nearly forgot to remember that

ISAE – 2019/2020

173

Next ?

vs.

The only sure thing is that it will be the user's fault.

ISAE – 2019/2020

174

NB : Past

2001 Space odissey, Stanley Kubrick & Arthur Clarke, 1968.

HAL 9000

Note (2010 Odissey 2): Contrary to duty imperative, R. Chisholm, 1963.

ISAE – 2019/2020

175

Overall presentation (2/2)

● Case studies
● IoT Security
● Wireless networks
● New generation avionics systems
● Network appliances
● Mobile telephony
● Gaming devices

● Wrap-up (on-demand)
● IDS
● Firewalls
● Tripwire
● Metasploit
● Anti-virus

ISAE – 2019/2020

176

IoT Security :

Keynote Speech, James Mickens,
27th Usenix Security Symposium (august 2018)

Let’s Forget All The Lessons From Traditional

Network Security And Hope For The Best

ISAE – 2019/2020

177

A wireless network

● WiFi
● IEEE 802.11a/b/g
● radio waves

● secured by WEP
● design fault : uses RC4
● deprecated : WPA(TKIP), WPA2(CCMP), EAP

● attack example
● source: Tom's Hardware Guide, 10&18/05/2005
● tools: kismet, airodump, void11, aireplay, aircrack

ISAE – 2019/2020

178

Test network

Access point
AP

Client
T

Attacker
A

MACs : AB-CD-EF-01-23-45, ...
Channel : 6 (1...15)

SSID : TEST (HOME, etc.)
WEP key : 0x12345678

Attacker
B

ISAE – 2019/2020

182

Active attack – void11

 Very noisy !
~ 100 IVs generated per second

ISAE – 2019/2020

183

Stealth attitude –
aireplay

Packet capture (ARP)
Re-send while masquerading

as the target
around 200 IVs per second

ISAE – 2019/2020

184

Last touch –
aircrack

Crypto. attack against RC4
(Fluhrer, Mantin, Shamir)

 aircrack-ptw (better?)
 WEP : K.O. (1min 3s?)

ISAE – 2019/2020

185

Overall presentation (2/2)

● Case studies
● Wireless networks
● New generation avionics systems - Industrial systems
● Network appliances
● Mobile telephony
● Gaming devices

● Wrap-up (on-demand)
● IDS
● Firewalls
● Tripwire
● Metasploit
● Anti-virus

ISAE – 2019/2020

186

Other industrial systems first

● Shodan exposes SCADA systems
● Simple web scanner for common apps.
● www.shodanhq.com

● False Illinois Water Pump Hack Case
● Actual system lack of security guarantees
● A no-event in practice

● Legitimate connection from a sub-contractor (from a
russian location)

● False assumption of SCADA hacking
● But nobody checked with nobody
● Finger-pointing ≠ security

ISAE – 2019/2020

187

Smart grid security

William Hunteman, U.S. Dept. of Energy, 1 march 2011.

ISAE – 2019/2020

188

Smart grid security

William Hunteman, U.S. Dept. of Energy, 1 march 2011.

ISAE – 2019/2020

189

Overall avionic domain schema (for DNS)

ISAE – 2019/2020

190

AFDX & co.

● Avionics network
● based on Ethernet (10/100 Mb/s)
● fully switched
● redundancy (2x)
● circuits available (with guaranteed transit time)

● VL : virtual links, multicast (1 to n)
● Statically preconfigured (including dest. port)
● VLid : 16 bits in the MAC Dest. Adress.

● network filtering (including over circuits)
● or not specifically?

● ICMP, SNMP (TCP) on-board
● Now ARINC 664 Part P

ISAE – 2019/2020

191

AFDX Evolutions

● Known
● Increase bandwidth

● Unknown
● Mix operational and service trafic
● Remove gateway function

Replace autoSAR

● Volpe Center
● ATA Gatelink

← Advertisement goes here

ISAE – 2019/2020

192

The ARINC overall model

ARINC 821 (or 811?)

ISAE – 2019/2020

193

DOT/FAA/AR-08/31

ISAE – 2019/2020

194

DOT/FAA/AR-08/31

ISAE – 2019/2020

195

Good old flyer

ISAE – 2019/2020

196

Focus on maintenance
(and software upload)

Good ref.: AviftechVideos

● Data loading on avionics systems
● Uploading data and functional programs (software)

from the data loader to airborne computers
● Downloading data
● ARINC 615

● Uses ARINC 429 data bus for file transfers
● ARINC 615A

● Uses AFDX/A664 Ethernet for transfers
● ARINC 665

● Media set of multiple…
● ...Loadable software parts (LSP)

ISAE – 2019/2020

197

«
H

ig
h
ly

 s
p

e
c
if
ic

»
 t
e

c
h
n

o
lo

g
y

1
9

7
8
-2

0
1
8

 ?

● www.acarsd.org

ISAE – 2019/2020

198

EUROCAE / RTCA documents

● EUROCAE ED-202A / RTCA DO-326A,
Airworthiness Security Process Specification,
June 2014

● EUROCAE ED-203A / RTCA DO-356A,
Airworthiness Security Methods and
Considerations, June 2018

● EURODAE ED-204 / RTCA DO-355,
Information Security Guidance for Continuing
Airworthiness, June 2014

ISAE – 2019/2020

199

Current systems critique

● No explicit security needs formulation
● Confusion between security functions and

regular system functionality
● No security requirements for certification (yet)
● Little authentication of users nor systems
● No distributed security services
● Lack of design security skills (for TCBs)
● Availability always safety-oriented
● Use of inadequate mechanisms for security
● Focus on perimetric security or verification

● Questionable distribution of efforts
● No public liability of security mechanisms

ISAE – 2019/2020

200

Requirements elicitation attempt - 1

● Physical security assumptions clarification
● Should we count on hardware protection, or not ?

● Software installation integrity protection and
exhaustive traceability

● Software signature
● Life long history

● Exhaustive auditing of all important actions with
legally binding near realtime offlining

● No onboard recorder needed anymore
● No more fingerpointing or who did what questioning

ISAE – 2019/2020

201

Requirements elicitation attempt - 2

● Opportunity to support several board/ground
communication technologies

● No link to specific wireless

● Adaptability to different onboard network
architectures

● Single network or multiple parallel networks

● Authentication without critical processes
perturbation

● Operators, environment, whatever

● Self authentication

ISAE – 2019/2020

202

Requirements elicitation attempt - 3

● Configuration management
● Secure and at least for certification

● Take into account civilian certification issues
● No secret signature scheme, do sign forms...

● Enable fault-tolerance mechanisms integration
● Not so easy to do variants authentication (eg)

● Do not compromise deterministic or realtime
properties

● Explicit guarantee that safety also rules

ISAE – 2019/2020

203

Requirements elicitation attempt - 4

● Allow ARINC 811 four domains implementation
● Adapt to IMA idea (idem)

● Aerospace issues

● Energy comsumption control (?)

● Offer a good hardware resistance
● With respect to existing computers

● Remote control service
● Specific conditions acceptable

ISAE – 2019/2020

204

Requirements elicitation attempt - 5

● Identity and authorization management
functions (either internal or based on ground
infrastructure)

● Nb : a few thousand worldwide users…

● Compatible with existing systems
● AFDX, Internet, L16, etc. (ok, isolated CAN...)

● Shared implementation opportunity
● Reusable (if not open source), no lock-in, esp. with

respect to protocols or access control

ISAE – 2019/2020

205

Requirements elicitation attempt - 6

● Explicit phases of operation
● Security guarantees with respect to transition
● flying, rolling, etc.
● sinking, hijacked, drunk-driven open to discussion

● Explicit irreversible phases of life
● Secure proofs available at any time
● being-built, in-operation, out-of-order, being-

repaired, destroyed, for-sale
● Whole system, ownership issues included

● Onboard secure maintenance documentation
● May be mandatory

● Unless proved really too little used after a (long) while.

ISAE – 2019/2020

206

Requirements elicitation attempt - 7

● Physically Unforgeable Function
● dunno but sounds cool and fit

● Possibility of secure cooperation link setup
● Binding two trains together, escadrille, etc.

● Similar systems should also be able to
cooperate securely

● For less complex operations (collision avoidance,
remote status relay, recommendation diffusion, etc.)

● Mandatory obsolescence control&planning
● with link to hardware resistance

ISAE – 2019/2020

207

Requirements elicitation attempt - 8

● Autonomous prioritization of critical functions
● Especially in case of failure or complex security

interactions, focus on critical functions if needed
● esp. those involving realtime constraints

● Availability-oriented requirement
● In the context of malicious faults...

● Do not disturb the program

● Emergency mode availability
● In case of system failure
● Security features should only enhance and never

downgrade further any fail safe safety mode

ISAE – 2019/2020

208

Requirements elicitation attempt - 9

● Provide public proofs of components security
● Including security setup
● In operation
● Appropriately signed

● also prints certification form on luxury paper for chief
engineer confirmation signature

● Security minimization
● Do not include any optional security functions

● (Option) Offer different operation modes
● certified/test mode, public/confidential mode, etc.

ISAE – 2019/2020

210

Architecture components - 0

● Security services
● Cryptographic services
● Data management services
● Data modeling functions
● Communication protocols
● Miscellaneous services

ISAE – 2019/2020

211

Architecture components - 1

● Security services
● Integrity
● Authentication
● Security states/phases management
● Software installation
● Secure logging
● Remote control

● Cryptographic services
● Conventional crypto.
● Execution time evaluation

● Focussed on appropriate functional subset

ISAE – 2019/2020

212

Architecture components - 2

● Data management services
● Security kernel data

● Dedicated API, destruction and permanent storage
functions, time-critical issues, etc.

● State management data
● Irreversible phase change
● Users management
● Internal documentation

ISAE – 2019/2020

213

Architecture components - 3

● Data modelling services
● Phases/states description language
● System and configuration description language
● Users and systems representation
● Certification-related elements
● Communication data (à la ASN.1)
● Logging data representation
● Documentation elements

ISAE – 2019/2020

214

Architecture components - 4

● Communication protocols
● (Secure) Conventional communication
● Proximity communication

● Limited security, short term ad hoc communication
● Long term cooperation link

● Establishment and usage
● Remote control communication protocol

ISAE – 2019/2020

215

Architecture components - 5

● Miscellaneous services
● Embedded

● Storage and internal communications (network)
● With critical communication capabilities

● Long range external communication
● Configuration management
● Physical access interfaces (and removable media)
● Sensors
● Positioning service

● Infrastructure
● Positioning service support
● Communication infrastructure(s)
● Version management
● Certification verification and route control authority
● Attack simulation (?)

ISAE – 2019/2020

217

Overall presentation (2/2)

● Case studies
● Wireless networks
● New generation avionics systems
● Network appliances
● Mobile telephony
● Gaming devices

● Wrap-up (on-demand)
● IDS
● Firewalls
● Tripwire
● Metasploit
● Anti-virus

ISAE – 2019/2020

218

Network appliances

● A common type of embedded systems
● routers, switches
● ADSL boxes
● WiFi stations
● ...

● Cisco OS
● PIX
● IOS

ISAE – 2019/2020

219

A thrilling story

● 2002, Black Hat, Defcon X, other things
● Summer 2005, Black Hat conference

● The Holy Grail: Cisco IOS Shellcode And
Exploitation Techniques

● Michael Lynn, ISS
● Cisco and ISS do act

● complaint
● on-site action (proceedings confiscated)

● Michael Lynn, ex-ISS, speaks anyway
● November 2005

● patch published by Cisco

ISAE – 2019/2020

220

Random thoughts (true or false)

● Routers and switches use off-the-shelf CPU to
run their software

● hardware is not alone
● There are buffers and they overflow

● there are no buffers overflow
● You cannot exploit them

● you can exploit them
● Such exploits are portable

● each piece of hardware is very different

Heavily based on Michael Lynn's Black Hat presentation

ISAE – 2019/2020

221

IOS Basics

● Monolithic OS
● no dynamic modules
● all adresses are static
● adresses differ from one build to another

● Realtime OS
● as soon as you execute you control the CPU
● exit cleanly (or fail miserably)
● as soon as you execute you can keep the CPU

● Stability is valued over everything else
● IOS would rather reboot than correct errors

ISAE – 2019/2020

222

Code quality

● Much better than on other platforms
● Heap internal integrity checks
● Overflow runtime checks
● Stack is rarely used
● A process checks heap integrity
● Very old code, very tested

● There are still bugs
● But you need a lot of imagination

ISAE – 2019/2020

223

The Dreaded Check Heaps Process

● Constantly walks the heap to spot bad links
● Even for unfreed entries, it detects incorrect links
● Executes every 30 or 60 seconds, depends on load

● It is the primary reason why heap overflow
exploits are so hard

ISAE – 2019/2020

224

Defeating the protection

● Code dissassembly
● Lots of time and energy
● Few known tricks

● pointers exchange
● heap overflow

● Defeating the heap check process
● Simulate a reboot (altering abort())
● a CPU watchdog will kill the heap check process

● Use the available time to complete the exploit

ISAE – 2019/2020

225

Impact?

● Cisco probably had a hard time
● A generic worm would have been very hard to

develop
● static adresses
● a lot of different images in production

● But..., some also thought to
● the Titanic
● or Pearl Harbor

ISAE – 2019/2020

226

Overall presentation (2/2)

● Case studies
● Wireless networks
● New generation avionics systems
● Network appliances
● Mobile telephony
● Gaming devices

● Wrap-up (on-demand)
● IDS
● Firewalls
● Tripwire
● Metasploit
● Anti-virus

ISAE – 2019/2020

227

Mobile telephony (before)

● Windows CE (Microsoft)
● Symbian (Nokia)

● open-source (as much as possible)
● Qtopia (TrollTech)
● Android (Google, Motorola)
● OpenMoko, OpenEmbedded (Sean, Koen, Harald,

Mickey, etc.)

ISAE – 2019/2020

228

Source : Nokia Course Pack 04300, v3.0JUST

REMEMBER

ISAE – 2019/2020

232

Mobile telephony (now)

● Apple iPhone
● Google Android

● Not a phone anymore : a computer
● a really portable one

ISAE – 2019/2020

233

Android & the Droids

● Linux kernel-enforced sandboxing
● Lots of « permissions » to request (refuse?)

● Application signing
● Signature-level permissions

● User IDs and file-access
● 2 applications have 2 UIDs
● and/but there is « shareUserID »

● Declaring and enforcing permissions
● Via the androidManifest.xml

● and per-URI permissions

Real-world usage examples?

ISAE – 2019/2020

234

Mobilife

● www.ist-mobilife.org
● IST-FP6 project (2004-2006)
● End users needs

● context awareness
● group management
● etc. (multimodal interactions, localization, ...)

● Reference architecture
● ...
● privacy & trust
● group management

ISAE – 2019/2020

239

TCG – Mobile Phone Use Cases (1/3)

● Platform integrity
● Devices possess and run only authorized operating

systems and hardware
● Device authentication

● to assist in user authentication (hold keys)
● prove the identity of the device itself

● Robust DRM implementation
● SIMLock / Device Personalisation

● device remains locked to a particular network

ISAE – 2019/2020

240

TCG – Mobile Phone Use Cases (2/3)

● Secure software download
● application, patches, firmware updates, etc.

● Secure channel between device and UICC
● Some security sensitive applications may be

implemented partly in the UMTS Integrated Circuit
Card (UICC) and partly in the device.

● Sensitive (e.g. provisioning) data echange
● Mobile ticketing
● Mobile payment
● Software use (security policies)

ISAE – 2019/2020

241

TCG – Mobile Phone Use Cases (2/3)

● Proving platform and/or application integrity to
end user

● The end user wants to know that a Device or
application can be trusted

● User Data Protection and Privacy
● Personally identifiable information
● Contact /Address books
● Wallets, credentials, identity tokens

ISAE – 2019/2020

242

GSM Security

● An old affair ?

● Not so good
● http://laforge.gnumonks.org/weblog/gsm/
● The network does not authenticate to the phone
● A5 « private » ciphers family issues

ISAE – 2019/2020

243

BYO SMS jamming

● « Blowing up the Celly »
● PacSec 2014, DEFCON 22
● Brian Gorenc, Matt Molinyawe (HP)

● OpenBTS-based

● RF test enclosure needed

● phone == target

ISAE – 2019/2020

244

Needed hardware

ISAE – 2019/2020

245

Overall presentation (2/2)

● Case studies
● Wireless networks
● New generation avionics systems
● Network appliances
● Mobile telephony
● Gaming devices

● Wrap-up (on-demand)
● IDS
● Firewalls
● Tripwire
● Metasploit
● Anti-virus

ISAE – 2019/2020

246

Gaming devices (>2000)

● Anti-piracy features
● Supplier-controlled software signature
● Protection architecture using hardware

components (hidden ROM)
● XBOX example

● Public key in PROM, private key at Bill's
● Integrity checks starting from boot
● Attack

● reverse engineering and ROM exchange
● Using James Bond, a Mech or a sniper...

(third party vulnerable code)
● Sony problems

www.xbox-linux.org

www.wiibrew.org... a princess...

ISAE – 2019/2020

247

Next step

● Multilevel security policy and mandatory
access control ?

● on a gaming device?
● on a home video recorder? (Philips, DRM)

● OpenBSD : Old style (or not)?

ISAE – 2019/2020

248

BadUSB

● SecurityResearchLabs study
● Karsten Nohl, Sascha Krißler, Jakob Lell
● PacSec Applied Security Conference

ISAE – 2019/2020

249

BadUSB

● USB devices include a micro-controller and
possibly flash storage

● Large family of possible attacks
● Emulate keyboards

● Device deregisters then register again as a different one
● Spoof network card

● DHCP magic overrides DNS or default gateway
● « USB boot-sector » virus
● Hide data on stick of HDD
● Rewrite data in-flight
● Update PC BIOS
● Spoof display

ISAE – 2019/2020

250

BadUSB

● Small hardware differences can detemine
vulnerability

● Especially flash presence
● Exposure is probably growing

● More devices, more complex and more
programmable

● Effective defenses are missing
● Simple ones (disable updates in hardware) are

limited to new non upgradable devices
● Secure crypto. sounds overkill for microcontrollers

(though security guys may disagree)
● Firmware scanning... can of worms

● No responses
● Chip, peripheral or OS vendors alike

ISAE – 2019/2020

251

Overall presentation (2/2)

● Case studies
● Wireless networks
● New generation avionics systems
● Network appliances
● Mobile telephony
● Gaming devices

● Wrap-up (on-demand)
● IDS
● Firewalls
● Anti-virus

ISAE – 2019/2020

252

Vulnerabilities – Attacks – Alerts

• Vulnerabilities
➢ Many types : buffer overflow, CGI, permissive access rights,

network session hijacking, privilege transfers, social
engineering, cryptanalysis, etc.

• « Attack »
➢ Exploitation of a single vulnerability
➢ Elementary attack or intrusion scenario
➢ Malicious vs. suspicious action

• Alerts
➢ Message sent after detection of an attack
➢ IDMEF (XML): Intrusion Detection Message Exchange

Format défini par l’IETF/IDWG

ISAE – 2019/2020

253

True positive �False negative �Ongoing
attack

False positive �True negativef �No attack

AlertNo alert

Alert generation (efficiency)

ISAE – 2019/2020

254

IDS

detection method

behavior after
detection

data source

detection
mechanism

use frequency

knowledge-based,
misuse detection

behavior-based,
anomaly detectionbehavioral

scenario

alert (passive)

react (active)

system audit logs

network packets

application logs

sensors alerts

state-based

transition-based

periodic

continuous

counter-measure

counter-attack
CENSORED

[Debar, Dacier, Wespi, 1998]

ISAE – 2019/2020

255

Usable techniques

● Scenario-based approaches
● Expert system (ES)
● Signature analysis (SA)
● Petri nets (PN)

● Behavioral approaches
● Statistical (ST)
● Expert system (ES)
● Neural networks (NN)
● Immunological approach (UII)

ISAE – 2019/2020

256

Current trends

• A single technique per tool, usually
• Signatures-based techniques domine

● Simpler implementation
● Performances

• Behavioral approaches are seldomly used in
commercial tools

• Reactive functions appear

ISAE – 2019/2020

257

Multi-event analysis

Intrusion detection

A1 A2 A3 A4

A1 A2 A3

versus

Generated alerts

O
b

s
e

rv
e

d
 e

v
e

n
ts

Matching markers

ti
m
e

ISAE – 2019/2020

258

Implementation considerations

● Probes
● (Network) Monitoring

● Situation choice
● Issues with switched Ethernet (mirroring vs. taps)

● System probes
● Signature number (and CPU usage)
● Signature accuracy and relevance

● Alerts management
● Collectors
● Secure exchange protocol
● IDMEF exchange format (RFC 4765 plus 4766 & 4767)

ISAE – 2019/2020

259

Possible architecture

Network probe

Server
System probe

Network probe

Manager
(1st level)

PC
Administration GUI

Manager
(1st level)

Manager
(central)
DBMS

Monitored network

M
o
n

it
o

re
d

 n
e

tw
o

rk

ISAE – 2019/2020

261

Signatures – Snort (1)

ISAE – 2019/2020

262

Signatures – Snort (2)

ISAE – 2019/2020

263

Exploitation des alertes

ISAE – 2019/2020

264

Intrusion detection shortcomings
(currently)

● Low detection rate
• False negative alerts

● Too many alerts
• False alerts : False positive
• Several thousand alerts per week (busy site)

● Insuficient alert semantic
• No global view
• Detection of a distributed attack is very hard

● It is difficult to detect unknown attacks
• This is an advantage of behavior-based methods

ISAE – 2019/2020

265

Too many detailsExemple : alertes générées par Dragon
6

[**] [1:1256:2] WEB-IIS CodeRed v2 root.exe access [**]
07/20-13:59:32.291193 64.165.187.170:4515 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:33.059882 64.165.187.170:4533 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:33.576217 64.165.187.170:4566 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:33.969027 64.165.187.170:4582 -> 193.54.194.111:80

[**] [1:1288:2] WEB-FRONTPAGE /_vti_bin/ access [**]
07/20-13:59:34.434017 64.165.187.170:4587 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:34.817953 64.165.187.170:4593 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:35.219711 64.165.187.170:4601 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:35.607048 64.165.187.170:4603 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:35.607048 64.165.187.170:4603 -> 193.54.194.111:80

6

ISAE – 2019/2020

266

Exemple : alertes générées par Dragon
6

[**] [1:1256:2] WEB-IIS CodeRed v2 root.exe access [**]
07/20-13:59:32.291193 64.165.187.170:4515 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:33.059882 64.165.187.170:4533 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:33.576217 64.165.187.170:4566 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:33.969027 64.165.187.170:4582 -> 193.54.194.111:80

[**] [1:1288:2] WEB-FRONTPAGE /_vti_bin/ access [**]
07/20-13:59:34.434017 64.165.187.170:4587 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:34.817953 64.165.187.170:4593 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:35.219711 64.165.187.170:4601 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:35.607048 64.165.187.170:4603 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:35.607048 64.165.187.170:4603 -> 193.54.194.111:80

6

Too many details

Nimda attack from 64.165.187.170
 towards 193.54.194.111

ISAE – 2019/2020

267

Exemple : alertes générées par Dragon
6

[**] [1:1256:2] WEB-IIS CodeRed v2 root.exe access [**]
07/20-13:59:32.291193 64.165.187.170:4515 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:33.059882 64.165.187.170:4533 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:33.576217 64.165.187.170:4566 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:33.969027 64.165.187.170:4582 -> 193.54.194.111:80

[**] [1:1288:2] WEB-FRONTPAGE /_vti_bin/ access [**]
07/20-13:59:34.434017 64.165.187.170:4587 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:34.817953 64.165.187.170:4593 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:35.219711 64.165.187.170:4601 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:35.607048 64.165.187.170:4603 -> 193.54.194.111:80

[**] [1:1002:2] WEB-IIS cmd.exe access [**]
07/20-13:59:35.607048 64.165.187.170:4603 -> 193.54.194.111:80

6

Poor semantics

Nimda attack from 64.165.187.170
 towards 193.54.194.111,

193.54.194.111 not vulnerable

ISAE – 2019/2020

268

Alert correlation opportunities

● Correlation techniques
● Integration of system information
● Next step? : Grouping and alert fusion

functions inside existing tools

ISAE – 2019/2020

269

Overall presentation (2/2)

● Case studies
● Wireless networks
● New generation avionics systems
● Network appliances
● Mobile telephony
● Gaming devices

● Wrap-up (on-demand)
● IDS
● Firewalls
● Anti-virus

ISAE – 2019/2020

270

Firewalls and Network protection

● Several design principles
● (TCP,UDP) « state-based » firewalls
● proxy firewalls

● Several security levels associated to DMZs
● Access control based on network flow

characteristics
● IP adresses : source, destination)
● TCP/UDP : source port, destination port = protocol
● action : drop, deny, allow, nat, trap, encrypt, ...

ISAE – 2019/2020

271

How do you define a rule, in practice?

● Given an application
● vlc (what's this?)
● http://mafreebox.freebox.fr/freeboxtv/playlist.m3u

(starting to understand)
● which « does not work », « Port number? »
● First steps
ortalo@hurricane:~$ ping -c 1 mafreebox.freebox.fr

PING freeplayer.freebox.fr (212.27.38.253) 56(84) bytes of data.

64 bytes from freeplayer.freebox.fr (212.27.38.253): icmp_seq=1 ttl=64
time=1.16 ms

--- freeplayer.freebox.fr ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 1.168/1.168/1.168/0.000 ms

ortalo@hurricane:~$ tethereal -i eth1 host 212.27.38.253

...nothing...

ISAE – 2019/2020

272

● Find (all) sources and destinations involved
● IP

eth1
 and 212.27.38.253 (hmm...)

● Experimental approach : monitor drops one
after the other while checking the network trafic

DROPPED IN= OUT=eth1 SRC=81.56.84.23 DST=212.27.38.253 LEN=52 TOS=0x00
PREC=0x00 TTL=64 ID=48783 DF PROTO=TCP SPT=1047 DPT=80 SEQ=1610765695
ACK=0 WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40101040201030300)

DROPPED IN= OUT=eth1 SRC=81.56.84.23 DST=212.27.38.253 LEN=52 TOS=0x00
PREC=0x00 TTL=64 ID=48784 DF PROTO=TCP SPT=1047 DPT=80 SEQ=1610765695
ACK=0 WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40101040201030300)

DROPPED IN= OUT=eth1 SRC=81.56.84.23 DST=212.27.38.253 LEN=52 TOS=0x00
PREC=0x00 TTL=64 ID=1506 DF PROTO=TCP SPT=1048 DPT=80 SEQ=1611201085
ACK=0 WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40101040201030300)

ISAE – 2019/2020

273

● Let's allow outbound HTTP
DROPPED IN= OUT=eth1 SRC=81.56.84.23 DST=212.27.38.253 LEN=52 TOS=0x00

PREC=0x00 TTL=64 ID=22928 DF PROTO=TCP SPT=1082 DPT=554 SEQ=2534727009
ACK=0 WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40101040201030300)

DROPPED IN= OUT=eth1 SRC=81.56.84.23 DST=212.27.38.253 LEN=52 TOS=0x00
PREC=0x00 TTL=64 ID=22929 DF PROTO=TCP SPT=1082 DPT=554 SEQ=2534727009
ACK=0 WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40101040201030300)

● and TCP/554 inbound (?)
DROPPED IN=eth1 OUT= MAC=00:50:bf:29:e7:88:00:07:cb:05:ec:fc:08:00

SRC=212.27.38.253 DST=81.56.84.23 LEN=1356 TOS=0x00 PREC=0xE0 TTL=57
ID=18727 DF PROTO=UDP SPT=32803 DPT=1044 LEN=1336

DROPPED IN=eth1 OUT= MAC=00:50:bf:29:e7:88:00:07:cb:05:ec:fc:08:00
SRC=212.27.38.253 DST=81.56.84.23 LEN=1356 TOS=0x00 PREC=0xE0 TTL=57
ID=18982 DF PROTO=UDP SPT=32803 DPT=1044 LEN=1336

● TV selection list available
● We allow UDP inbound (>1025)
hurricane:~# dmesg | grep 212

DROPPED IN= OUT=eth1 SRC=81.56.84.23 DST=212.27.38.253 LEN=80 TOS=0x00
PREC=0x00 TTL=64 ID=6 DF PROTO=UDP SPT=1065 DPT=32769 LEN=60

DROPPED IN= OUT=eth1 SRC=81.56.84.23 DST=212.27.38.253 LEN=44 TOS=0x00
PREC=0x00 TTL=64 ID=7 DF PROTO=UDP SPT=1065 DPT=32769 LEN=24

● The show begins...

ISAE – 2019/2020

275

One last note...

« The final step (…) simply adds a second Trojan
horse to the one that already exists. The second
pattern is aimed at the C compiler. The replacement
code is a (…) self-reproducing program that inserts
both Trojan horses in the compiler. (…) First we
compile the modified source with the normal C
compiler to produce a bugged binary. We install this
binary as the official C. We can now remove the
bugs from the source of the compiler and the new
binary will reinsert the bugs whenever it is compiled.
Of course, the login command will remain bugged
with no trace in source anywhere. »

ISAE – 2019/2020

276

Morale

« You can't trust code that you did not totally
create yourself.
(Especially code from companies that employ
people like [him].) »

Ken Thomson, Reflections on Trusting Trust,
Turing award lecture, in Communications of the

ACM, vol.27, no.8, pp.761-763, August 1984.

