
ISAE

Institut supérieur de l'aéronautique et de l'espace
Embedded Systems Master

2017-2018

Embedded Systems and
Computer Security

Rodolphe Ortalo

(Work in progress...)

Document description
Title : Embedded systems and computer security
Created : 2004-05-10 22:34, Rodolphe Ortalo
Modified : 2018-01-25 14:39,
Revision n° : 1395
Statistics : 61 pages, 262464 characters, 2 tables, 3 figures.
Topic : computer security
Keywords : computer science, security, embedded systems

Ainsi que la vertu, le crime a ses degrés
Et jamais on n’a vu la timide innocence
Passer subitement a l’extrême licence.

Phêdre (1677), IV, 2, Jean Racine

TABLE OF CONTENT

1 Introduction..1
1.1 Securitease...1

1.1.1 General security management rules..1
1.1.1.1 Skills...2

a - High level academic skills...2
b - Critical behavioural qualities...2
c - The hacking no-skills and certified not-a-diploma..3

1.1.1.2 Money...4
a - Under threat or in full confidence..4
b - Not infinite...4
c - Transparency / accountability..5

1.1.1.3 Authority...6
1.1.2 CVE and statistics...7
1.1.3 The embedding of computer security into things..7

2 Fast paced computer security walkthrough..9
2.1 Security properties...9
2.2 Attacks categories..10

2.2.1 The unknown...10
2.2.2 The assumed..10

2.3 Elements of cryptography..11
2.3.1 Overall view of an encryption algorithm..12
2.3.2 Symmetric ciphers...13

2.3.2.1 Special cases...13
2.3.3 Public key cryptography...14
2.3.4 Cryptographic hash functions...15

2.3.4.1 Cryptanalysis : evil activity or fruitful effort?..16
2.3.4.2 SHA-3 & co..16

2.3.5 Signing..17
2.3.6 Other topics...17

2.4 Introduction to mandatory security policies..17
2.4.1 Security models...18
2.4.2 Mandatory and discretionay access control policies...18
2.4.3 Discretionary access control policy modelling...19

2.4.3.1 Models based on the access control matrix..19
a - The HRU model...19
b - The Take-Grant model...20
c - TAM...20

2.4.3.2 Role based access controle models...21
2.4.4 Multilevel policies...21

2.4.4.1 The DoD policy..21
2.4.4.2 Biba integrity policy...22

2.4.5 Information flow control policy..22
2.4.6 Interface security models..23

2.4.6.1 Deterministic systems: Non-interference...24
2.4.6.2 Non-deterministic systems : Non-deducibility, Generalized non-interference, Restriction.................25

3 Embedded systems and security...26
3.1 Specificities (or not)...26

3.1.1 Definition attempts..26
3.1.2 Security aspects...27
3.1.3 Challenges...27

3.2 Physical attacks..28
3.3 TPM...29

4 Software development and security..32
4.1 Security requirements engineering..32

4.1.1 Note on security updates...34
4.1.2 Risk analysis..35

4.2 Static verification and (secure) software development tools...37
4.2.1 Source code analysis tools...37

i

4.2.2 Code integrity..38
4.3 Security Evaluation Criteria...39

4.3.1 Security standards as criteria...39
4.3.2 Common criteria / ISO 15408...41
4.3.3 Note on DO-178C...42
4.3.4 Alternatives..43

4.4 Coding..43
4.4.1 Frequent or knowledgeable attack classes..43

4.4.1.1 Understanding buffer overflows...43
4.4.1.2 Format strings...44
4.4.1.3 Arithmetic overflow..44
4.4.1.4 SQL Injection..45
4.4.1.5 Code or input obfuscation..46
4.4.1.6 Race conditions...46
4.4.1.7 Awkward things..47

4.4.2 Practical recommendations...47
4.4.2.1 Design first...47

a - Know common faults...47
b - Do not stop there..47
c - Architectural principles..48
d - Especially APIs and protocols...48

4.4.2.2 Obscurity does not help..49
a - This paragraph should not need to be written..49

4.4.2.3 Quality is security...49
4.4.2.4 Multiple lines of protection are useful..50
4.4.2.5 Quality guidelines...51

a - Simple code..51
b - Check errors...51
c - Fix bug classes...51
d - Take care to semantics...51

4.4.2.6 Check user input...51
4.4.2.7 Optimization and language...52
4.4.2.8 Remove code..52

5 Cases studies...53
5.1 Wireless networks..53
5.2 (Not so) New generation avionics systems..53
5.3 Network appliances..54
5.4 Mobile telephony...54
5.5 Gaming devices..54

ii

TABLE INDEX

Table 1: HRU command format...19
Table 2: HRU elementary operations...20

FIGURE INDEX

Figure 1: Evolution of the total number of vulnerabilities listed in CVE..7
Figure 2: Overall operation of an encryption algorithm..12
Figure 3: Bell-LaPadula security policy operation example..22
Figure 4: TPM 2.0 Architectural overview...30
Figure 5: Innovative, open source, general purpose, good old and ground breaking digital data destruction device.......34
Figure 6: The rainbow series documents..39

iii

Embedded systems and computer security

1 Introduction
Security is about malicious faults. That is to say intelligent adversaries trying actively take advantage of your computer
system, usually called attackers. Though computer security is not exactly game theory, because neither attackers nor
defenders follow perfect behaviours ; it shares with this domain much of the difficulty. In some sense, it is even harder
than a game because attackers may disguise or hide themselves easily on the Internet and do not want to respect any
game rules. In others ways, it is not as desperate as the defender has extended access to the internals of its own com -
puter system, can setup all the affordable protections he sees fit and there is no absolute loss or total victory as in real
games. Unlike chess, practical security is not black and white.

1.1 Securitease
As a field, computer security needs little advertisement. For as long as the author remembers, there has always been a
lot of hype with security issues and few classical text books1.

Unfortunately, this is not doing any good to the field, quite the contrary. It is a nuisance. This popularity attracts those
who do not like security issues and complexity, but simply tolerates the topic intricacies because it pays them well or
offers them some career progression that they would not have access to otherwise. But such people would probably do
many things for money – except try to learn skills and solve actual issues – and they do little good to the field. Some -
times, they simply fuel the hype with their own little invention or calumny for a chance to expand their own interests.
The first thing to do in security is to spot these actors and flee them for two reasons. First, because they are part of the
attackers, the worst ones, the internal ones. And second, for one’s own moral equilibrium before being tempted to imit-
ate them to grab the easy fruits for the kids while compromising their education2.

This popularity is partly due to the fact that security touches everyone, as everyone can be a victim of malicious foes.
But then, everyone also thinks such an actual direct concern entitles him or her to advise and regulate on security rules
and techniques. Unfortunately, being a potential victim does not mean being competent or able to defend oneself
adequately3 ; even if you are a person with power. Most computer security professionals are frequently being lectured
about how they should manage security. The fact that they do not agree technically on the specific recommendations
they are given is infrequently taken into account. We are all potential victims after all so we all have the right to speak,
no? Well, no actually. Real victims have a right to complain (and even being assisted to do that). Potential ones mostly
have a right to listen and comment after the fact (or a duty frequently ignored to testify). So please, first sit down and
read. We’ll talk again as soon as you have completed reading the bibliography – which in the first year of this course,
should still be rather easy.

These two paragraphs are an illustration of what some call the security circus. That circus is real. I would even say that
at the beginning of this 21st century, it encompasses the majority of computer security activity. I am not so competent to
comment similarly on general security but it looks like too, and for example Ross Anderson in a classical textbook,
goes as far as to say that the rampant growth of the security-industrial complex since 9/11, and the blatant fearmonger-
ing of many governments, are a scar on the world and on our profession. We have a duty to help it heal, and we can do
that in many different ways ([Anderson2008], p.891).

Hopefully, the comedy will fade out as an historical relic when the domain will mature and computers will start to
exhibit security properties for their end users (again). But for the moment, the circus performs everywhere on our
devices and takes a heavy tribute on the available means.

You had better be warned if you do not want to spill money and energy in an entertaining but otherwise useless spec-
tacle, in your own organisation.

Anyway, taking interest professionally in computer security specifically involves first wondering about general security
management issues. The author is not familiar with so many diverse fields or organizations to say that these aspects are
really specific to security but from his narrow point of view they do seem to be. So let us browse them, my way.

1.1.1 General security management rules
Organizational security is fundamental for building and later on using secure systems. Once secure systems are built,
they may help us maintain organizational security. But for the moment, we will mostly have to stick to manual enforce-
ment of these organization rules to reach a first grade of reasonable security management.

1 A tentative list : [Bishop2003], [Anderson2008], [Gar2011], [Pfleeger2015].
2 Food vs. education is an interesting compromise question for the security point of view when you think about it. Of course, the

present text is certainly biased, but no, the author is not speaking about how to eat correctly before attending the exam.
[Univ48], art. 25, art. 26, [Hugo49], [Hugo50], [Condorcet92].

3 All children know that. Children listen very carefully about security rules. Unfortunately, they grow up too fast.

1

Embedded systems and computer security

1.1.1.1 Skills
The first aspect linked to people is selecting the appropriate skills for addressing the computer security field. Even that
is problematic.

a - High level academic skills

Computer security knowledge involves classical computer science skills. Most of the time, security protection aspects
emerges at the most advanced levels of computer science specialities: compiler design, specific hardware processing
design, formal analysis of programs. Software analysis or attack techniques appeal to much more basic computer sci-
ence skills: assembly language programming, overall memory layout, scripting languages intricacies and erroneous data
management. So, as usually, one wants to protect system more than attack them, the technical skills needed are classical
high level computer science skills like those found in any good computer engineering academic cursus.

Additional skills to deploy may vary from mathematical and theoretical grounds with cryptography and formal verifica-
tion issues to less scientific skills when it comes to understanding and managing correctly the administrative and organ -
izational aspects of security management.

So expect the typical profile of a debutant security professional to be a high level computer science engineer with some
domain specialization in some computer security specific things.

So totally banal, albeit A-level scientific education. You would expect the same from another computer science engin-
eer claiming a specialization in one field or another, no? So, there really is nothing special about the skills needed for
computer security: they are those of computer science4.

Admittedly, computer science is still a rather new field: probably only 30 years old. So sometimes, you may be temp -
ted, especially in those fields where academic diplomas did not exists 10 years ago, to believe a candidate who shame-
lessly claim that autodidacts rule in the world of computer security. Well, the truth is that computer science is also
already 30 years old. True autodidacts are extremely rare and probably also have an engineering diploma5.

After initial diploma and academic studies, professional experience is evaluated normally ; with attention to the fact
that computer science is key to the domain with organizational security rules and risk management possible addons.
Project management or people management has few things to do with computer security. Legal management similarly
(though it may have a link with general security).

Finally, at the end of this section which probably says nothing, except that you should recruit a computer science pro-
fessional for doing computer security, let’s finish by underlining that, in order to address computer security or security,
one needs computer security or security skills. It should not be worth repeating the obvious, but it is.

Especially in the embedded systems world, whether the computer in question is embedded in a car, a plane, a spaceship
or a train is irrelevant. You need security skills first, not avionics, railways signalling, car manufacturing, or whatever
domain-specific standard knowledge you may wish. That’s nonsense to expect non-security expertise to be more
important to solve security issues than security knowledge. And I’d add that if domain specific experts of any of those
other fields were able to solve computer security issues they would have done it themselves already. And they would
also have solved the security issues of desktop systems too. That’s probably again a part of the security circus that, even
in the technical domain, all engineers from the other domains claim to be able to solve security problems and that their
managers believe them and endlessly support their half-baked solutions. But that’s just false, that’s pretentiousness and
addiction to the popularity of the ‘security’ buzzword. Hard computer security issues, especially for distributed systems,
necessitate specific computing experience ; and these issues are starting to become a majority in networked embedded
systems which are distributed systems in the first place from the security point view. And these distributed systems usu -
ally come without any distributed security mechanisms nowadays6 ; which is somehow revealing of the average embed-
ded systems engineers awareness level with respect to general security theory.

More empirically, security engineers that would claim to solve, for example, avionics systems issues would certainly be
laughed at. What do you expect from avionics systems engineers trying to solve security issues?7

b - Critical behavioural qualities

Outside of computer science and computer security knowledge, which are primarily the topics of this document; some
non technical skills are specifically relevant to the security field. One could even say that these requirements are not
specifically skills, they are behavioural qualities pertinent to this field.

4 And as distinct of project management as any other. Nothing in computing is special for project management. But that’s another
debate.

5 First hand. And nearly nobody ever asked me to prove my Apple][c self-acquired and hard earned skills ; which shows too that
autodidacts skills probably do not age well. But the 65SC816 hardware bugs were real and instructive. The community too.

6 The juxtaposition of several point to point security mechanisms does not make a distributed security system, even if there are
many of them, especially if there many of them, and then the protocols start short-falling.

7 The aeronautical domain is taken as an example here both for personal reasons and given the expected audience of the lecture.
Next targets are starting to appear.

2

Embedded systems and computer security

Because security is about trust, computer security is about trusting the computer systems that we use. And embedded
systems security is about trusting critical embedded computer systems which failure could lead to human loss or cata -
strophic consequences; in presence of malicious attackers. So the first skills to expect from someone entering the
domain are those you would expect in the other fields where trust is a first and foremost requirement. Like for a police-
man, or an accountant, a high level of honesty and transparency are required skills to work in computer security.
Security is about trustworthy people at the highest possible level and in difficult circumstances.

This should not be theoretical. One can be forgiven for presenting oneself under good light at a recruitment interview, a
management review or for the corporate picture. But those playing with numbers to present better statistics, those who
never want to announce bad news because it could be detrimental to their careers, those who never want to hear bad
news because it would oblige them to make choices ; all those who repeatedly play the security circus in fact, should
simply be gotten out the field as early as possible. A special mention will be given to those who always defer responsib -
ility to someone else. They are frequently interested in the security field, where the culprit is known from the begin -
ning ; we call it the “attacker”. So final responsibility is never on them. But those who fail to assume responsibility
cannot help. Trust implies liability8.

This rough presentation may sound rude. It is. But the situations implied by security management are rude. Even trusted
people failure9 should be taken into account, so we need to gather as much good will as possible in the first place or it
leads no where. Again, this will sound familiar to law enforcement or financial accounting people where these behavi-
oural skills are also determinant.

Given these remarks, do not expect a smooth character but be strict on honesty and transparency, first.

c - The hacking no-skills and certified not-a-diploma

Technical skills are obscured in this domain by the self-proclaimed genius hackers discovering magical computer
attacks as teenagers at home; later becoming peer-acclaimed cybersecurity researchers from the latest industrial com-
pany in need of a white-hat alibi to hide their lack of basic software engineering knowledge; said “researchers” discov-
ering always similar cybersecurity vulnerabilities on their laptops during international flights back from the latest
buzzword conference.

Rightly, finding attacks may necessitate computer science skills. But it may not. Some attacks are stupidly easy. Some
are astoundingly clever. Some appeal to research level statistical algorithms and signal analysis against the latest cryp -
tography. Others only require college level macro programming on desktop software. Both will look arcane, but noth-
ing decisive. You will have to resort to other evaluation techniques to have an idea of the technical level of your
candidate.

As a recruiter, you may just have been ill advised temporarily when only looking at vulnerability research results. You
just engaged your company on a bad profile for a few decades (hopefully the candidate will never go to a management
position). But think about the people recruited only against this profile type who are stacked in their endless research of
software vulnerabilities. Some try to escape the trap the honourable way reinventing classic decades old testing tools
before migrating back to software engineering functions. Others simply keep on bookkeeping endless inventories of
bad software while whining constantly for wage increases10. And organizations relying only on these people are
doomed to setup huge security circuses internally and face increasing difficulty addressing actual computer security
problems.

The competent security professionals who focus on protection and do no try to attack software feel a little lonely at the
moment. At least, they have their moral for them.

Others pieces of the security circus that obscure the vision are the paying security “certifications” popularized by many
groups of professionals. These certifications are the collective variant of ‘self-proclaimed experts’. Contrarily to sci -
entific learned societies, which are backed by academic institutions nomination rules and legitimacy, these groups are
mostly self defining and valorizing their products like many companies. This does not mean that a certification is effort -
lessly obtained. But one has to realize that it does not mean much in terms of selectivity among people profiles. It usu -
ally primarily means that one has thoroughly read one specific (big and technical) book and successfully answered a lot
of (automated) questions about it. And paid the fee to access the book and the questions list.

It does not mean that this specific book is a good one. It may be a lower than average book, it usually is a pretty con -
sensual one, so again nothing decisive. But worse of all is the fact that such certifications are competing. Security certi-
fication (and possibly certifications in general) encourage people to read and trust one book only – the one upon which
designers base their certification tests and their global knowledge value. (Possibly split in several steps of increasingly
expensive fees.)

8 Childish finger-pointing must be left to the elementary school.
9 For example under threat.
10 Probably due to the fear of being fired if the true content of their activity is uncovered. Fear can make people succeed at doing

incredible things.

3

Embedded systems and computer security

What would you think of a teacher who would recommend his students to read one book only (certainly his one) and
not try to search the literature to balance and compare several authors opinions and several books? This is what I came
to think about professional certifications11. At best the time taken to obtain them can be spent better on other things ; at
worst they will lock you under a specific mindset for considering security issues which may be totally outdated sooner
or later.

And, you can be sure that a wise network manager with high level engineering diplomas will very fast learn how to
address network security issues accurately and intelligently. If he is trusted and well advised, he will solve problems
faster than a network-security-certified robot will be able to list all its possibly-useless out-of-context and soon-to-be-
outdated components-off-the-shelf. I have seen it all the time12. So certified professionals are soon outperformed by
other computer science engineers, fuelling (a).

1.1.1.2 Money
The issue of money, and more generally material means, in the field of security and computer security is also pretty dif -
ficult to address.

a - Under threat or in full confidence

Security is the kind of expense all of us would happily discard entirely. Seriously. We all would love to live in a secure
world where, whatever valuable, each and every thing would be secure, and everyone, regardless of origins, would be
nice to everyone. It would be nice, and indeed extremely economical because full security granted by society would
cost us nothing13.

Security is also the kind of expense we could multiply by ten as soon as tomorrow morning because we suddenly real -
ized we were living in a dangerous world. Dangerous means that we can be or already have been the target of criminals
that may destroy, deface or steal something valuable just for the fun of it. Maybe they have already done it so it is too
late or maybe it is just fear raised by some neighbour mishap ; but the sensation is still so present that you start to add
cameras everywhere, to install firewalls everywhere, to hire a lot of self-proclaimed security experts that will confirm
your nascent feelings and finally all of the executives committee fall into costly paranoia14.

None of the attitudes is reasonable. But both are frequent in the security field. That’s a real problem for security profes-
sionals. This money pays wages but I have seldom seen it managed reasonably ; or more exactly, managed at all. The
most disturbing question you can ask to an organization nowadays with respect to computer security is : “ How much is
the computer security budget? ” and check its content if you are given a figure to verify the most common items are
within (including estimates of your own future pay). If you are satisfied by the answer in a specific company, give me a
call and sign immediately15.

b - Not infinite

When not under the innocent restraint of best world idealists but nourished by media coverage or political postures,
security budgets can be comfortable and made available in surges of attention. Unfortunately, this fuels the opportun-
istic behaviour of fast commercials which are ready to take the money on the first technical idea. Similarly, employees
from the information technology department may be interested in focusing all the available security money on one big
budget (for ease of management issues primarily) which tends to concentrate naturally on isolated significant projects.
Such a combination of demand and supply favours fast selection of candidates and big monolithic single-does-all solu-
tions (whether technological or organisational). Unfortunately, this is probably exactly the opposite of what a technic-
ally difficult, fully transversal and permanent problem field requires : focussed, numerous, well chosen and well
coordinated solutions.

So, when money is available for security, which has been the case in several places in the last decade, it is not necessar -
ily spent adequately on the most interesting security options. However, for many years, the general consensus, includ-
ing among security professionals, has always been to consider that, even if these investments are not optimal, they are
useful for computer security in general (and they pay the bills).

But this is not the case. Available means and available money is not infinite for computer security. Not at all. Such
budgets allocation is in competition with strong opponents, like directly profitable activities in commercial companies,
production-oriented investments in any other organization and even offensive weapons acquisition in the “no security
compromise” military domain. On the contrary, to enhance its scope, the security budget can only count on things like
paranoia (an unreliable and generally questionable ally) or risk analysis results (that is to say the work of resources

11 And do not distort my reasoning by requesting all possible certifications! All their courses look the same. The real weakness of
my argument is section 2.

12 So in some sense, a parrot makes a better security consultant than a robot. Do not ask me what parrots can do to robots.
13 I am already hearing would be activists adding “except our liberty” and warn against surveillance-state dictatorship, but wait for

the next footnote.
14 Do you really think a privately-managed self-inflicted dictature is any better than state dictatorship? The truth is that reasonable

security delegation to public powers under transparent law enforcement is not negotiable ; and that serious matters necessitates
serious reasoning.

15 The attentive reader may have noticed the ordering of events has been intentionally perturbed as a security exercise for him.

4

Embedded systems and computer security

usage optimization and minimisation specialists) for spending support. So, outside or paranoid surges 16 and war condi-
tions, the budget is objectively far from infinite. And that is a normal situation.

So security is a field where paying attention to the spending decision is important and the accurate selection of working
and optimal solutions with respect to the protection needs and the security objectives is necessary. The cost of a solution
should neither be a deterrent or an invitation. The adequacy of a solution is a necessity regardless of its cost, even a
high one. (Furthermore, by experience, an expensive solution is likely to be an inadequate one similarly to a technically
overpowered inadequate one.) On the other side, in security more than anywhere, there is no free lunch. If a solution is
inexpensive: either your security objectives are erroneous or someone else is paying for them (and you should be thank-
ful but still prudent).

A limited budget means also encouraging an attitude pretty difficult to enforce in practice. Implementing a bad solution
will prevent you from switching to the correct one later on. So it is probably better to take a risk than to spend money
on a solution that will not work correctly. In the end, if you did not find something satisfying, you will still take the risk
and you will have spilled money which may have been spent more adequately on a better option (including something
entirely unrelated to security). Even legal concerns may not be so much covered by inadequate spending.

This is not at all the reasoning of a production environment. It has links with insurance coverage or financial risk man -
agement. It usually defeats return on investment logic and is not familiar with many managers outside of top level exec -
utives (who do not usually master the effectiveness details until it is too late to reverse their lack of wisdom). This is an
extremely unpopular statement at the moment too, because most of the industry has invested big money in big (network
filtering firewall) projects, in big (white-hat hacker or software update administrator) teams or services and the recur-
ring costs of these things now dry out any new additional security projects. At the same time, the associated managers
now feel so much responsible of the situation and of the associated teams and costs, that reconsidering the strategy
would mean putting them into question, which is obviously counter-intuitive for them. Current executives, mostly
under influence by the cybersecurity industry, are then totally deaf to logical reasoning.

However, spilling money without being able to justify all of it extensively is a recipe for disaster in the long term. As
soon as the industry consensus over suboptimal common usages will fade out in favour of strong security mechanisms,
the players who did not evolve will simply have to disappear.

Furthermore, with respect to security per se, this is simply a lack of professionalism. Security is about discovering
proofs about an attacker behaviour or a legitimate user demand. Transparency and accountability are basic demands to
organizations in charge of security. Of course, these requirements should apply first to all their security expenses.

c - Transparency / accountability

However, in many cases, security managers have a slight bias to resort to confidentiality statements when asked about
their budgets… But not only when asked about their budget, also when asked about proofs of their attacks statistics for
example, they warn about not being able to show information due to integrity risks or whatever (while obviously, they
should pursue legal action in public if they had real proofs of intentional damage attempts).

Unfortunately, the author has now enough experience to conclude that the lack of pragmatic, understandable and verifi -
able elements about security statements means these statements are void. There is no specific trust to have in someone
claiming security failures, alleged attackers or found vulnerabilities if he cannot prove them to you. Similarly, there is
no point in trusting security mechanisms that their promoters do not want to explain or that they prevent you to exam -
ine for whatever confidentiality reason (or even because you do not have authority for looking, see next section).

People are usually proud of good security systems. They show off, they show you how it works, how strong it is. Some-
times even carelessly. They rarely hide them and certainly not among their peers so in the worst case they can redirect
you to someone else who will tell you they trust a system because some explanation was given.

It is the lack of security that makes managers appeal to false confidentiality reasons or missing certification standards.

But, here, transparency is not a philosophical or political attitude. It is a requirement for adequate operation. Security
professionals obviously cannot share credentials of systems under their control, but there is little reason for them to
refuse to explain the mechanisms they set up especially to those relying on the system. Whatever the system and even at
the highest levels of security17 if nothing can be known about the security of a system, maybe it would be wise for said
users to simply reconsider their trust entirely. All precedents have demonstrated spectacular failures : “secret mechan-
isms” are really for kids assets.

Complementing transparency is the accountability requirement for most of security managers actions. And by account-
ability, we do not mean exhaustive microsecond precise logging of petabytes of useless traces. We mean the responsib-
ility of actions should be clear and available for everything. If Alice has decided to revoke Bob’s access rights to her
personal agenda, this is Alice and Bob problem and they should sort it out themselves whether Alice simply misclicked

16 That may even compromise budgets or later years.
17 Nobody sane ever wants to know the codes to launch those famous nuclear missiles, except the one who carelessly ran for

elections and became commander-in-chief against all odds. I would shamelessly advise him or her to ask army officers to share
publicly something about the chain of command security ; and if nobody wants to say anything publicly, to ask for a new
system. And repeat until something is said. (“*#%!-ing professor!” does not count.)

5

Embedded systems and computer security

or has decided to break engagement. In any case, Bob had better accept the situation and find himself another tennis
partner for friday ; and Alice cannot expect any serious security staff to hide her accountability in the access rights
modification either.

This accountability must extend to security staff actions, especially when it involves special access rights like those
allowing to bypass normal security rules or perform investigations (either a posteriori or through anomaly detection
software)18.

Of course, it also extends to security expenses which all should be justifiable and associated pretty precisely to specific
operations. And this may apply not only to computer security administrators but also to several information system
managers as well with current operating systems techniques19.

Making finally the link between budget usage and accountability, we usually fall under the next section because it fre -
quently reveals in an organization that many people claim doing security expenses, independently of security manage-
ment.

1.1.1.3 Authority
That’s the first thing to note with respect to authority of security management. The security budget should be managed
by security managers ; and the computer security one by computer security managers. Modern advanced analytical
accounting may offer some highly sophisticated ways of counting money spent on security and some organizations may
want additional control (and diverse data) on the spending decisions ; but the truth is that centralization of security
expenses is simpler. It should be an initial step to simply know how much is spent on the topic. And those most compet -
ent to evaluate the budget usage are those who have the skills for this evaluation (see 1.1.1.1). Spreading expenses
decisions or evaluation is just budget mismanagement. The latter is not only frequent, it is a sign of the lack of maturity
of organizations with respect to security handling20. But like giving advice on security, everyone loves to spend security
money, possibly even more than arguing on advices.

We do not necessarily mean that computer security management, and its associated means, must be independent from
the information technology department (or the security management from overall logistics for example). The IT officer
may very well want to assume directly computer security responsibility, and isolate a computer security budget inside
his or her IT expenses. However, it means that frontiers must be well defined and aligned with finances and responsibil-
ities.

Because authority is key to security management. In the information system, it is even the heart of security to provide
the basic blocks usable to distribute and manage authority areas over the organization computer system. At the organiz-
ation level, authority of security personnel is usually the most worrying concern. Because skills, money and transpar -
ency are so rarely aligned with the needs of the activity, the authority of security managers frequently simply fades
away behind the one of their stakeholders. IT managers, developers, job processes holders, legal departments, execut-
ives all appeal to security management for enforcement of their own view of how security must operate. Most of them
do not intend to share budget or personnel over a new or invading activity that they had rather isolate or absorb (if pos -
sible). Furthermore, given its scope and its natural association with spectacular failures, hype or false alarms, security is
a perfect new excuse for most of usual organization perturbations.

Needless to say, the authority of security management suffers seriously from all of these internal competitors, especially
when they are claiming to help.

The only key issue is to define clearly authority. Obviously, a narrow and restricted perimeter for security management
will be associated with a small budget and overall boring activity over basic security micromanagement that no-one else
in the organization wants to do. A wide authority perimeter going from design to operation in a top level industry may
give an engaging challenge and tremendous budget for security or computer security people recognized in the whole
company.

And this is orthogonal to success. The smaller perimeter may be perfectly managed by few skilled or dedicated people.
The wide perimeter may be a total failure due to skills mismanagement of numerous people, unaccounted money
expenses and good security marketing hiding the whole thing for years. Anyway both situations will lead to small
security advances for the world in the end (albeit probably much more cheaply in the first case).

The problem with these small advances if they are confirmed is that, combined with the exponential expansion of com-
puter systems in all areas of activity, they may lead overall to a significant degradation of computer security as a whole.
Some indicators of this situation presented in the next section, heavily supplemented by a decade old similar observa-
tion made in [Spaff03], are in fact at the origin of the comments made up to now.

18 Law enforcement officials would love you if you provided them an application and an automated way for justifying and tracing
all their actions while they perform an investigation in a computer system. And yes, I am shamelessly trying to bribe everyone
to the cause (in the name of universal progress).

19 Yes! Tell us how much all these security updates deployments cost exactly. And no, the browser version upgrade is not security
related.

20 And the first thing certified-but-non-section 1.1.1.1-compliant auditors forget to check in security maturity level evaluations.

6

Embedded systems and computer security

1.1.2 CVE and statistics
The most popular public database referencing software vulnerabilites is the CVE database (CVE stands for Common
Vulnerability Exposure), managed by MITRE (cve.mitre.org). As time flows, this data was established by MITRE as
the most valuable reference in this domain with the additional important quality of being independent from a specific
software manufacturer.

Figure 1 presents the evolution of the total number of vulnerabilities recorded in the CVE database, since the end of the
nineties.

From the analysis of this figure we see the current trend of the number of known vulnerabilities in common software
since the end of the nineties. We are obviously breaking record after record of total number of knows vulnerabilities.
Your interpretation may vary of course. You may feel safer thinking that all these vulnerabilities are corrected now and
that we correct more and more of them. You may question the figures because such raw numbers do not take into
account the severity21 of problems or, obviously, the value of the assets held by the vulnerable computers. Or you may
feel like the author pestering on overall security degradation and wondering if all those software companies and their
developers are aware of the record numbers of security vulnerabilities they are producing.

Something clearer in the end is how attackers operate to attack computer systems. Most of the time they simply use
known vulnerabilities: there are dozens of them newly made available everyday. Why bother searching them? Only the
most skilled and dedicated attackers try to exploit original ones, most probably in governmental agencies. Note also, the
least scrupulous of these attackers could simply try to install hidden vulnerabilities into popular software. Which may or
may not be counted in the above figures if they are well hidden [Thomson84].

The above number taken from the CVE database is by definition just a lower bound.

And the most important thing in the database is the information on the vulnerability existence and the corresponding
software, not the overall count. In practice, one may evaluate one’s own computer system situation based on this
information. The author feels much obliged to MITRE for maintaining such an invaluable source of information against
slings and arrows for many years.

1.1.3 The embedding of computer security into things
Most worrying is the fact that these unsecure systems may now become critical embedded systems too.

The easiest way to fill this section with fancy convincing elements is to use pictures.

Nowadays, you just have to browse the network with your smartphone to find pictures of critical embedded unsecure 22

systems. Just take a picture of the smartphone itself in the first place to notice your first security issue: that is to say, try
to borrow your neighbour’s phone to take the photo and then try to share it correctly. Then go back to your browsing
session just to quickly pace through the videos of the latest armed land drones initiatives from armies, astonishingly23

21 Check http://www.cvedetails.com/ for that. Unfortunately, not much more reassuring than the raw count...
22 If only because you cannot find anything convincing about their security.
23 You and me: naive.

7

Figure 1: Evolution of the total number of vulnerabilities listed in CVE

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

2017

0

2000

4000

6000

8000

10000

12000

14000

16000

CVE

http://www.cvedetails.com/

Embedded systems and computer security

already a decade old. Have a look at that connected home electricity smart meter device linked to all French homes.
Tentatively compare all these futuristics cars that grown up rich kids can remote into the garage (from the former smart -
phone) but that will drive themselves (soon™) and avoid all the real kids playing around. Try to keep count of all the
rotors of these drones flying around houses, except the White one due to the latest security patch. Try to reboot these
screens popping up everywhere to entertain you when you are being driven, carried or flown for more than an hour:
maybe arguing with the charming crew on the true danger of these devices is the real entertainment (unless the device
calls security personnel immediately). But please, do not touch or even wirelessly perturb these medicine insulin pumps
that connect to one of your relatives when, on (hopefully rare) occasion you walk through the local hospital 24: manufac-
turer pictures are enough to understand that remote access will be absolutely critical for someone in medical systems.

But using pictures is not the most pertinent way. The problem with computing devices is not only that you see them pop
up everywhere and constantly fail on bad security practices. It is that you do not see all of these embedded systems hid-
den in bigger systems. It is also that nothing is said about their security, or so little that you cannot even identify those
that may have tried to put some effort into protecting them, or their users, or their owners, or their data, or some other
data, or well, protect something computer-related in the neighbourhood. Another concern is that the security standards
which are supposed to be used to design the security functions in these specific domains may have yet to be written.
That the certification authorities are innocently waiting for those standards to be written; while the manufacturers intel -
ligently wait for the certification authorities to start to write them themselves while mimicking all the efforts they put
up internally on their own business protection as initial start-up activity on the standardisation topic.

In front of such a virgin land, the best way to raise readers awareness to the problem of computer security with current
and future embedded systems may be to appeal to their imagination. Go back to memories of any science-fiction movie
of your choice and remember that killer robot, this assassin drone, these god-like omniscient governmental police ser-
vices, these planes, cars, and trains all crashing at will, misguided by vulnerable autopilots, these self-replicating bugs
eating planets, or the initial sin on USSC Discovery One.

Through imagination, you may realize that embedded systems and computer security is one of those invisible issues
that constitutes a strong technological barrier between the promises of computer systems and actual technological
advances. But that would still be imaginary. So let’s have a look and try to throw our own stone to break that barrier.

24 At least, if you walk, things are not so bad.

8

Embedded systems and computer security

2 Fast paced computer security walkthrough
In this chapter, we will walk at a very fast pace through the general security mechanisms and protection techniques
applicable to computer systems. We will not do a detailed analysis of these various areas as it is usually required to
resort to dedicated literature to address some techniques in detail. On the contrary, we will browse through them in
order to give the reader a global idea of their applicability to computing in general.

We may also specifically focus on some of the numerous misuses of techniques commonly found in this field where
practitioners frequently buy or sell subtle and complex variants of digital snake oil25.

2.1 Security properties
In the classical terminology of computer systems dependability established by [avizienis2004], security is defined as a
combination of three basic properties: confidentiality, integrity and availability.

Confidentiality is the property of information not to be revealed to non-authorized users. First, of course, it means the
information system should be able to prevent users from reading confidential data unless they are authorized. But less
intuitively, confidentiality also means that it may be necessary to prevent authorized users from communicating confid-
ential data to non-authorized users. This involves controlling more of the information flows potentially existing inside
the system. In practice, ensuring the confidentiality of a piece of information may involve controlling the copying of a
file containing it for example.

Integrity is the property of information to be accurate. It aims to prevent an inadequate alteration of data (either a modi -
fication or mere destruction), either because it is performed by an unauthorized user without any “write” access to
information or because it involves an authorized user trying to forge illicit data while preserving its innocuous appear-
ance. In practice, one can be sure that a forged financial ledger will look like a valid one and, for example, will cer -
tainly exhibit equality between income and expense totals even if it contains fictitious transactions.

Availability is the property of information to be accessible when it is needed by legitimate users. So the system should
probably offer reservation mechanisms to allow access to authorized users for reading and writing when they request it.
It should also prevent any user from monopolizing resources in order to prevent others accesses (so also pretty power -
ful resource management). In practice, especially considering current asynchronous and time-unconstrained technolo-
gies, availability in front of a malicious and powerful attacker is frequently considered to be very difficult to achieve26.
Many companies simply resort to allocating enormous amount of resources in order to overwhelm most common
attackers means ; an approach which obviously cannot work with respect to attackers controlling key elements of the
information system infrastructure or simply those matching them in term of raw capacity27.

When speaking of security, we mention the confidentiality, integrity and availability of information. But what is the
information we are dealing with in fact ? Information can be taken in the sense of usual data, like the one most com-
puters manipulate and store in files. But data is not only in storage or at the computation stage. Data is also typed (at the
keyboard), generated (by sensors), displayed (on screen) or transmitted (on a wired network or in the air). And the
security of data at all these steps must also be considered in order to protect information – not only when it is stored on
a magnetic disk28.

But there is also of lot of hidden information associated to other data and accessed by the computing processes that is
pretty important to the system security. This information is commonly regrouped under the denomination of “meta-
data”. File access rights are typical examples of such meta-data which importance to security management is immedi-
ate. But other things like identities, names, pathnames, time of computation, usually associated to some information or
processes in a computer system are frequently as important to handle correctly for maintaining its security than regular
data operation.

Many other properties are found in the literature. Being faithful to his own teachers opinion 29, the author will stick to
the vision that most of those other properties can be reduced to a combination of either confidentiality, integrity or
availability applied to specific instances of data or meta-data. For example, anonymity is the confidentiality of user
identity, non-repudiation the availability of the sender identity combined with integrity guarantees of the data itself, etc.

25 Whether the snake or the oil is digitized first is left as an immediate research diversification topic to the aspiring practitioner.
26 That means many experts just expect you to forget about availability. We strongly suggest to grab the occasion to forget about

them too.
27 i.e.: governments, network operators, etc.
28 “Of course”, I hear many say. But who knows the bandwidth of a VGA cable and its actual radiative falloff distance ? Note old

standards do matter till all the interesting conference rooms discard them.
29 As well as finding the argument both convenient and somehow elegant.

9

Embedded systems and computer security

2.2 Attacks categories
Most people interested in computer security are frequently attracted initially by the perspective of learning things about
attacks and attackers. Fortunately, this hope is frequently deceived. Fortunately because it is not the aim of a computer
security course to train new attackers. All those trying to embrace the career of cyberwarriors currently may call it
unfortunate, but the author does not agree with them or more precisely with their ill-advised self-proclaimed command-
ers usually simply trying to advance their own career agenda without caring about the consequences.

2.2.1 The unknown
Knowing attacks, working on attacks, in computer security like in cryptography, should exclusively aim at improving
the existing protection systems. It may involve finding flaws in current systems, even hypothetical ones, in order to pro-
pose ways of eliminating them entirely or to evaluate residual risks inherent to real systems. Sometimes you also want
to double-check alleged flaws are real (especially when reported by an innocent third-party). But implementing security
attacks like regular software testing programs is the sure recipe for missing the security target.

So, when studying attacks, we will first do some pretty abstract work about classification and overall modelling hypo -
thesis. And first of all, we will assume that we do not and will not know much about actual attackers.

In practice, the innocent computer scientist exploring the computer security domain is in a much worse position than
the beginner player adventuring the realm of chess masters world championship: in chess, at least, you can name your
opponent and he agrees to follow the rules when moving his pieces. Attackers evidently do not obey this logic and first
of all, will not reveal anything of themselves if they can avoid to do it. They will even try to disguise as much as pos -
sible as existing innocent users. Henceforth, all those statistics about attackers you find in the newspapers will usually
reveal more of the intent of the statistician than of the (usually empty) covered class of attackers30.

2.2.2 The assumed
Faced with so much uncertainty, we rational human beings of course react humanly: we classify and regroup under con-
venient etiquettes what we cannot evaluate certainly31.

This is actually pretty legitimate because managing security, like classical risk management, is about managing uncer-
tainty and necessitates a lot of assumptions. A significant part of the work is to make sure these assumptions are not
entirely out of scope.

Up to our own knowledge, a pretty good attempt at defining interesting classification axis for computer system attack -
ers was proposed in the ITSEM ([ITSEM93], §3.3.29-32, §6.C.28-34).

It started by trying to provide a rating of the strength of security mechanisms among a simple scale of three levels:
basic, medium and high. The emphasis of the rating is on the amount of effort required to exploit a vulnerability (not
discover it or later reading about it). The evaluator rating of the strength of the mechanism is based on several aspects.
Let's study the actual text of this reasonable32 standard :

« Estimating the Strength of Mechanisms

6.C.28 According to the ITSEC (Paragraphs 3.6-3.8) the meaning of strength of mechanisms ratings is as
follows:

a) For the minimum strength of a critical mechanism to be rated basic it shall be evident that
it provides protection against random accidental subversion, although it may be capable of
being defeated by knowledgeable attackers.

b) For the minimum strength of a critical mechanism to be rated medium it shall be evident
that it provides protection against attackers with limited opportunities or resources.

c) For the minimum strength of a critical mechanism to be rated high it shall be evident that it
could only be defeated by attackers possessing a high level of expertise, opportunity and
resources, successful attack being judged to be beyond normal practicability.

6.C.29 These definitions are informal, intended to be meaningful to users of a TOE. This subsection gives
guidance on more objective means of measurement.

30 When you think about it, such statistics are in fact extremely useful currently, to understand some of the practitioners of the
field.

31 The younger or the most foolish which only realizes that those things may actually do hide in shadows also sometimes take the
road of a paranoia. It proves extremely hard to cure. The usual “last kiss in bed” protection measure stops working after around
eight years old victims.

32 In the sense that it has reached the age of reason. All readers trying to speak of an “old” standard will be kindly requested to
decline their own birth date for comparison. As with many aspects of computer science up to now, reasonable solutions are
frequently discarded in favour of brand new unproven but fashionable tools.

10

Embedded systems and computer security

6.C.30 Since strength of mechanisms concerns expertise, opportunity and resources, it is necessary to
expand on the meaning of these terms:

a) Expertise concerns the knowledge required for persons to be able to attack a TOE. A lay-
man is someone with no particular expertise; a proficient person is someone familiar with
the internal workings of the TOE, and an expert is someone familiar with the underlying
principles and algorithms involved in the TOE.

b) Resources concern the resources an attacker must expend to successfully attack the TOE.
Evaluators are usually concerned with two types of resources: time and equipment. Time is
the time taken by an attacker to perform an attack, not including study time. Equipment
includes computers, electronic devices, hardware tools, and computer software. For the
purposes of this discussion,

- In minutes means an attack can succeed in under ten minutes; in days means an
attack can succeed in less than a month, and in months means a successful attack
requires at least a month.

- Unaided means no special equipment is required to effect an attack; domestic
equipment is equipment which is readily available within the operational environ-
ment of the TOE, or is a part of the TOE itself, or can be purchased by the public;
special equipment is special-purpose equipment for carrying out an attack.

c) Opportunity covers factors which would generally be considered outside an attacker's con-
trol, such as whether another person's assistance is required (collusion), the likelihood of
some specific combination of circumstances arising (chance), and the likelihood and con-
sequences of an attacker being caught (detection). These factors are difficult to rate in the
general case. The case of collusion is covered here, but other factors may have to be con-
sidered. The following forms of collusion are discussed: alone if no collusion is required;
with a user if collusion is required between an attacker and an untrusted user of the TOE
for an attack to succeed; and with an administrator if collusion with a highly trusted user
of the TOE is required. This definition of collusion presumes that the attacker is not an
authorised user of the TOE. » ([ITSEM93], §6.C.28-30)

Such assumptions about the attacker categories one system faces, or more precisely is supposed to resist to, are
adequate for evaluating the protection of a system. They justify studying specific attack techniques in more detail in
order to clarify the rating of these various aspects.

Detailed implementation of a vulnerability exploit up to in-the-field execution capabilities evidently goes much further
than this rating necessity. Sometimes it may be useful to fight skepticism, but even there, experience shows that it does
perform pretty poorly or is only effective on niche issues. The actual reasons for wanting to explore systematic practical
implementation of attacks finally seem pretty unreasonable.

On the contrary, sketching such implementation can be fruitful in order to explore limitations of protection techniques
and improve them.

2.3 Elements of cryptography
Cryptology is an essential tool for computer security. However, it is the author duty to first warn the reader that our text
is not a cryptology textbook. Cryptology is a mathematical domain. It does not allow improvisation or approximation.
The author is far from mastering enough of the field to do more than speak of cryptology. And also make note that it
seems to be both a new and hard mathematical domain. It is also a mysterious and fascinating topic leading to all sorts
of erroneous or abusive statements.

Then, the objective of this section is primarily to offer the reader the overall knowledge of cryptologic tools needed to
use them correctly and prevent some of the most dangerous misuses found in the field. Readers wanting to know more
about cryptology are invited to refer to more competent authors work, such as [Oppliger2011], [Handbook1996],
[Schneier93].

The first mistake in this field is the confusion between cryptology, cryptography and cryptanalysis.

Cryptology is the combination of two domains :

• cryptography33 which aims at producing hidden messages, not understandable by third parties ;
• and cryptanalysis, which aims at discovering these hidden message, decrypt them.

33 Impertinently, Wikipedia says “some use the terms cryptography and cryptology interchangeably in English”. The author notes
that Wikipedia is then undeniable on the issue ; and himself vehemently denies all signs of jealousy in this footnote.

11

Embedded systems and computer security

Other vocabulary clarifications may be useful. Avoid confusion between cryptography and steganography ; the latter
addressing covert information. Sympathic ink or watermarks are example of steganographic techniques aiming at hid-
ing information (usually among other unrelated data).

Encryption is the process of converting ordinary information, called plaintext (or cleartext) into unintelligible text,
called ciphertext. Decryption is the reverse, moving from the unintelligible ciphertext to the original plaintext. The pair
of specific cryptographic algorithms performing encryption and decryption is called a cipher. Most of the time, opera-
tion of these algorithms involves a specific secret information set called the key(s) – which may involve several ele-
ments.

As a domain of mathematics, defining new correct cryptographic algorithms is difficult. Many of the proposed
algorithms have been broken after a while. Important fundamental advances in this field, both on the cryptographic and
the cryptanalytic side, are pretty recent compared to the usual time scale of mathematical results. For example, public
knowledge of public key systems is from the seventies, differential cryptanalysis from the nineties34. These recent res-
ults are sometimes not very well demonstrated and may exhibit some theoretical weaknesses or inaccuracies.

Implementing a cipher using a computer program is difficult too. The internal parameters, the timing of program execu-
tion, the padding of empty blocks all can lead to decisive information leaks that compromise the whole algorithm secur-
ity. And finally the environment of the algorithm can have an influence too on the overall security as initialisation may
involve big random number generation, secure storage, deletion of temporary data, user interaction, etc.

All these elements factor into making cryptographic engineering a difficult task.

However, with all these warnings made, it has to be said to that the practical progresses in publicly available crypto-
graphy have been tremendous. Nowadays, with a very common computation device, it is totally possible to operate on
more data than one would probably ever need in a lifetime some cryptographic protection algorithm that the most
highly ranked military officials of the most powerful nations would have only dreamed of half a century ago. Actually,
it seems that this is now a part of the problem, because those officials descendants are starting to get mad at the fact that
they were not the exclusive benefactors of these advances and fearing that the regular public would use them for evil
purposes35.

2.3.1 Overall view of an encryption algorithm

We will use the following notation to denote encryption and decryption, using the parameters presented in the figure
above:

• encryption : C = {M}Kc

• decryption : M = [C]Kd

A good cipher must offer several properties in order to ensure the confidentiality of message M data :

• it should be impossible to find M from C without knowing Kd ;
• it should be impossible to find Kd, even knowing C and M (known cleartext attack) ;
• and it should be impossible to find Kd, even knowing C while choosing M (chosen cleartext attack).

In all three cases above, one should make the hypothesis that all the details of the algorithm itself are known to those
who could try to break these properties, but not the keys of course. The statement “impossible” in these properties is to
be taken both in the usual sense and in the algorithmic sense. It must as improbable for a competent and well equipped
attacker to violate one of these properties as it is for a layman to guess the right solution at random.

Such a high level view illustrates the main improvement brought by encryption algorithms. Encryption algorithms do
not really solve any information protection problem, but they allow something that was previously impossible, they
allow to move this problem and transform it into the problem of encryption keys protection which we hope will be
easier to solve than protecting all the original information in the first place.

34 All these results are even younger than the author ! You could very well fall on the inventors at one of the social events where
these arcane magics are celebrated ; or (less probable) even hire them if you are wise and rich.

35 While thinking about it, hopefully, this is not exactly like in the statistician case (see note 30). Hopefully.

12

Figure 2: Overall operation of an encryption algorithm

Encryption Decryption

Encryption key
Kc

Decryption key
Kd

M = plaintext C = ciphertext M = plaintext

Embedded systems and computer security

2.3.2 Symmetric ciphers
When the encryption key Kc and the decryption key Kd are identical, the algorithm is a symmetric cipher, which single
key is usually denoted K (Kc = Kd = K).

All publicly known cryptographic algorithms were symmetric ciphers until 1976 (and the publication of the first asy-
metric cipher). The most recent and common examples of symmetric ciphers are the two standard encryption
algorithm : DES et AES.

DES (Data Encryption Standard) was officially defined in 1976. It is an encryption algorithm using 64 bits data blocks
and 56 bits key (with 8 parity bits of protection). DES design spanned several years : from a public base proposed by an
IBM team, the algorithm was improved36 several times by teams from the NSA before being submitted back to the (very
suspicious) scrutiny of the original IBM team. The algorithm design is clearly oriented towards a hardware implementa-
tion (as shown by the embedding of parity bits the key itself). A generic improvement of DES is Triple DES or 3DES
which offers twice37 the key length at 112 bits38.

AES (Advanced Encryption Standard) succeeded to the previous standard and was defined officially in 2000. It is an
encryption algorithm using 128 bits data blocks and offering 3 possible key lengths of 128, 192 or 256 bits. AES was
chosen after a public call of proposals and selection process, similar to the one leading to DES. Many more proposals
were submitted to the selection committee which operated in a transparent process, but cryptanalysis efforts against the
AES candidates may have been more fragmented than for DES initially. But these efforts were subsequently focused on
the selected algorithm and, after more than 15 decades of heavy cryptanalysis, AES security is still uncontested with
respect to its initial specification39. Of note is the fact that AES is the first and only publicly accessible cipher approved
by the NSA for top secret information40 protection when used with an officially approved module. AES is available in
many different encryption packages (including hardware implementations on common CPU). Note the name given to
the candidate algorithm finally selected to become AES was Rijndael41, a contraction of the name of its two inventors
and one can still frequently see AES nicknamed with it.

The main advantage of symmetric ciphers is due to their encryption speed. 1 Gbit/s in hardware and 100 Mbit/s in soft-
ware are pretty realistic figures with modern implementations42 and symmetric ciphers speed can generally reach top
networking speeds. Another advantage is the relative short key length they require for a given level of security. A
80 bits key length is still pretty acceptable to resist brute force attacks today for some time. Most algorithms allow for a
key length between 128 and 256 bits now, hence with a considerable margin. Therefore, the key of symmetric ciphers is
rather short and easy to store or manipulate43.

The primary drawback of symmetric cipher is due to their symmetrical nature and the necessity to share the key
between who encrypts messages and who deciphers them in a communication. Sender and receiver must trust each
other for securing the cleartext appropriately and also trust each other to protect the key correctly. This mutual trust
constraint is further enhanced by possibly out-of-band secure key distribution or renewal issues.

2.3.2.1 Special cases
Experience let us think of two specific points worth an additional paragraph or two.

First, there is apparently a need to clarify again and again the security level of a specific type of symmetric cipher: the
exclusive-or with a constant key value K. This scrambling operation does not offer any security and will not resist more
than a few minutes to a serious cryptanalyst. Unfortunately, those who propose this kind of cipher are not usually able
to perform that cryptanalysis44 ([Will1], V.i.). And it remains surprisingly difficult to convince all those who understand
the operation of this nice wonderful scrambling that it has nothing to do with serious cryptography. The simplest tech -

36 During the two decades following publication of DES, this word would have been written between quotes to underline the
suspicion raised by NSA modifications and the fear that they had introduced a back door in the algorithm. Today, it seems that
the NSA modification indeed improved the resistance of the original IBM proposal towards a general attack technique
(differential cryptanalysis) then unknown from cryptographers working publicly. The suspicion towards NSA enhancements is
then probably unfounded. All doubts on the absolutely exceptional capabilities of NSA in the field of cryptology at that time are
also cleared. This note is also a nice practical exercise in viewpoint time management.

37 3DES involves 3 iterations of DES, hence its name. It is therefore approximatively three times slower than a DES, but one can
reuse the hardware implementation to mask the impact. However, the key length is double as the middle iteration keying is a
permutation of the first half of the key. Even today, 2^112 is still pretty reasonable ; though nostalgia plays a role too probably.

38 As well as an incredibly efficient screening case for evicting merchants of encryption devices powered by snake oil.
39 At least, up to our knowledge.
40 When using 192 or 256 bits keys.
41 A prononcer « rhine-delle » ce qui est révélateur de l'origine wallone du chiffre. Certains mauvais esprits frontaliers du lieu de

naissance de l'AES en déduiront donc qu'il s'agit d'un chiffre belge et qu'il n'y a aucune raison de traduire cette note...
42 And this was written ten years ago… But performance improvements have slowed down since the surge of software memory

boulimia.
43 For example, it's realistic to store it on paper. Hand written paper if you follow me.
44 If they are able to do it, usually they are going to propose you next a variant of a classical escrow scheme or some handmade

special algorithm, unless you ran away very far first.

13

Embedded systems and computer security

nique may be to point out that it is a modern implementation of a classical polyalphabetical substitution, the “Vigenere
cipher”, which first usage is attributed to the french diplomat Blaise de Vigenere (1523-1596). Reliance on 16th century
technology sometimes raises the appropriate concern.

To the credit of those insisting in such belief, one has to confess that the same binary operation can be useful in another
context. As a matter of fact, if you are looking for a very good and proven encryption algorithm for the highest level of
security, you have to know that the perfect and unbreakable cipher has been known for a long time. And it is implemen-
ted using an exclusive-or. However, the key must be a perfectly random bitstream as long as the cleartext and must
never be reused (in practice an infinite key length condition). According to Shanon information theory, this is a perfect
cipher. As the key must be as long as the entire set of all the data transmitted eventually, as it must be truly random and
of course distributed without errors both to the sender and the receiver prior to actual transmission ; this is not really a
convenient cipher. But it can be worth knowing in specific applications45. It has been proven unbreakable. It is usually
referred as the one-time pad (OTP).

2.3.3 Public key cryptography
With public key encryption algorithms, the encryption key and the decryption key are different and do not play the
same role anymore, Kc ≠ Kd, and :

• Kd must be kept secret, as only Kd owner can decrypt a ciphertext ;
• however Kc is public, which means that everyone can encrypt a message.

The most well known public key encryption algorithm is RSA. This algorithm relies on the difficulty of find the factors
of big numbers with small numbers of prime factors (typically two). In this case, the public key corresponds to this big
number N, product of two (big) prime factors p and q which themselves are the components of the private key. The
encryption algorithm transformation operate on the message using N to build the ciphertext. The inverse operation
necessitates the knowledge of N secret prime factors to perform the decryption in a reasonable time. In practice, keys
are built by choosing the prime factors first46, hence the private key, before computing their product to build the corres-
ponding public key. If one does not know the private key, one assumes that decryption of a message built with RSA is
equivalent to N factorization problem ; which is infeasible in the general case for a computer as soon as N is big.

The primary advantage of public key ciphers is, of course, that no trust is needed between the sender and receiver of a
message as they do not share any key. The management of encryption key is facilitated by their public nature : they can
be sent directly by peers or gathered in key directories. This easiness is also sometimes misleading as security vulnerab-
ilities of public directories are probably more subtle than those of private or symmetric keys. On the contrary, the
private key must never be sent as its disclosure usually cancels the security of all the system, possibly including past
messages. Public key algorithms apparition was a revolution as they opened new domains of application : as a mean for
distributing symmetric keys, as a support for electronic signatures, for electronic certificates, etc. The main difficulty
linked to public keys directories or public key distribution in general is linked to the need to protect the integrity of
these keys, or more precisely the integrity of the link between one key and the identity of its holder. Cryptographic
principles protect the link between the public and the private key, but it is the job of the operational protocol to ensure
that the user identity associated to one pair of keys is not altered. (The risk being that an attacker replaces a public key
belonging to its target with another one which private key part he holds before he further eavesdrops on future mes-
sages sent to the original peer by other users of the public key directories.)

Therefore the operation of public key ciphers is frequently coupled with integrity mechanisms surrounding the public
key. There are currently two main approaches for protecting them.

First, the private key can be included in a certificate including the desired administrative information and the signature
of a trusted third party. A user can the verify himself the integrity of a certificate he got from the peer with which he
wants to communicate, provided he already held the third party public key. The latter is usually embedded in another
certificate. This gives birth to certificate authority hierarchies, with self-proclaimed47 certification authorities at the root.
Afterwards, all the integrity guarantees associated to some user level certificate rely on the actual validation actions of
these authorities (e.g. in person signature generation or alternatively remote identity card checking). This is the
approach underlying the X.509 standard48.

45 Such as protecting the confidentiality of the discussions between two deep pockets paranoid high level executives, or between
two nations leaders, or between one nation leader and some of the navy strategic force commanders, in case of heavy
disagreement with the former.

46 Somehow randomly by the way, and this note is absolutely not a joke.
47 They signed themselves their own public key. Everyone can do that. Most commercial or administrative bodies would like

everyone to think that only them should do that but necessity knows no law.
48 The most common certificate standard, which initially targeted phone directories, with major telecommunication operators as

natural self-proclaimed authorities, user level certificates containing name and (wired) phone number and some convenient
intermediate delegation opportunities to partner telephone companies. And yes, it is a decades old standard for reliable phone
numbers publication that is supposed to protect Internet commerce and probably also most major industry software. Cross
check with figure 7 for further insight into overall computer security status in this age.

14

Embedded systems and computer security

A public key can also be simply signed by a set of other actors, without distinguishing any specific actor ex ante. Our
objective being to guarantee that a specific property string (like the name, an email, a pseudo, etc.) corresponds to a
specific public key, it is possible to obtain this guarantee progressively by a chain of interlocutors signature until one
who was able to perform direct verification of the claimed property (in person 49 for example). This is the approach
adopted in PGP and OpenPGP afterwards.

The precautions for public key management and day to day usage of public key encryption seems to be counter-intuit -
ive. It is not uncommon to be unable to recover the original version of a message one has just sent encrypted for
example, unless you ask the receiver to send it back to you after decryption (plus re-encryption with your own public
key unless the information itself is revealed on the network). It is also pretty difficult for a layman to understand the
impact, the objective and the modus operandi of key signing50. Usually it is difficult to reach a correct and informed
operation of the whole organization using cryptographic tools. This situation leaves the organization pretty vulnerable
to social engineering attacks or mere user errors. Finally, some aspects of public keys management are not really imple-
mented in the existing protocols or tools: things like revocation, renewal or controlled generation for example.

Outside of these operational problems, asymmetric ciphers also exhibit other more generic drawbacks.

First, these algorithms are relatively slow. You can reach speeds of a Mbits/s ; which means in practice one or two
orders of magnitude slower than symmetric algorithms. In practice, these algorithms are frequently applied in combina -
tion with a symmetric algorithm to improve the overall performance. (For example, it is possible to use the public key
algorithm to protect a random key sent together with the message itself encrypted using a symmetric algorithm using
that random51 key.)

Second, the length of the keys typically provided by these algorithms is pretty important, especially in comparison with
those used with symmetrical algorithms. Public keys and private keys of 1024 bits up to 4096 bits are common with
classical algorithms. Given that the private key must be very well protected, such a size can be a problem52.

Frequently, public key lifetimes are chosen to span several years. As we noted the difficulty to protect public keys dir-
ectories integrity and to perform key revocation efficiently, we consider such time frame to be a drawback, though it
may prove necessary for usefulness in the context of signature or certificate publication.

Finally, given current common algorithms, it is not really possible to share a private key between several users. Addi -
tional protocols are needed to cover actual users needs which frequently involve signature or access rights delegation,
information sharing and interim or multiple signing rights.

Of course, asymmetric algorithms are among the most interesting discoveries of modern cryptography, especially for
civilian usage ; but their useful application necessitates insertion in a full system using other components, symmetric
algorithms in particular53.

2.3.4 Cryptographic hash functions
A cryptographic hash function is (probably) a collision-free one way function given current terminological knowledge
of the author54. It is anyway a function H which allows to generate, from message M, a fingerprint or hash H(M) such
as :

• the fingerprint H(M) has a fixed width n (e.g. 128 bits) whatever the size of M ;
• the probability that 2 different messages M and M' have the same fingerprint H(M) =H(M') is ~1/2n ;
• knowing M, it is easy to compute H(M) ;
• knowing M, it is impossible55 to find M'≠M such that H(M')=H(M).

Typical examples of hash functions are MD5, SHA-1, SHA-256 or DES in CBC mode56. Typical examples of crypto-
graphic hash functions are SHA3 or AES using a Miyaguchi-Preneel construction57.

49 As an improvement to the arcane but short-lived public key secure hash hexadecimal representation verification ceremonial of
the 20th century between isolated computer geek pairs, the 21 st century proposes so-called “crypto-parties” with even more
geeks and also the public and even sometimes communication between the two groups.

50 Though the very existence and expansion of those crypto-parties contradicts this statement nowadays.
51 Truly random. As in not pseudo-random generated. Really.
52 This size problem impact has changed with technology evolution. For example, the memory capacity increase of smartcard

memory probably means asymmetric algorithms key size does not matter as much today in their case ; or that it matters in
another context, like for the Internet of Things.

53 Or hidden components, like the (slow but exact) transition hidden at this precise place.
54 A few minutes ago, the section was titled “secure hash functions”, which is probably still not so bad.
55 In the computational sense of course, that is to say, there are no known polynomial time algorithm that can find a result really

faster than simply trying randomly.
56 Note how we omitted a word to trick the inattentive student. Those are interesting, but not necessarily recommended nowadays.
57 The whole idea will lead the interested student to [Handbook1996] (chapter 9, figure 9.3) or to the Whirlpool hash function and

its noteworthy birth place, the NESSIE European project.

15

Embedded systems and computer security

The first usage of such functions was associated to data integrity, when sending a file on the network or with respect to
eventual alterations of a filesystem. In either case, even if an attacker is able to change the data, it could be possible to
detect the modification using an offline fingerprints database computed beforehand. The most well known tool in this
area is named tripwire and gave its name to the class of tools58 as well as a commercial company59.

Another common use case is electronic signature in practice by applying an asymmetric encryption algorithm to a fin -
gerprint of the signed file instead of the full lengthier file directly.

2.3.4.1 Cryptanalysis : evil activity or fruitful effort?
The hash functions domain allows us to look in more detail at the interest and potential impact of the arcane side of
cryptology : cryptanalysis. Contrary to popular belief, cryptanalysis is not an activity especially associated to blame-
worthy organizations or specialized army units. It is an integral part of the day to day activity of cryptology research.
The design of an adequate encryption algorithm necessarily involves trying to break it via various means to evaluate its
resistance and at the next step sharing the work with other cryptologists in order to try to break or improve each other
work.

However, this mathematical activity is very obscure to outsiders, even for engineers familiar with ciphers implementa-
tion. The impact of some advances in cryptanalysis can be underestimated or, conversely, successful attacks on simpli-
fied variants of an algorithm without consequences on the full version feeds useless paranoia. This is just the normal
back and forth cycle of this domain and it simply necessitates gathering knowledge without misconceptions.

The hash functions domain during the first decade of the 21st century is a pretty good illustration of this state of fact. At
the end of the nineties, with the first widespread deployment of some cryptographic tools accompanying the deploy-
ment of Internet, most implementations reused the pre-existing hash functions readily available : MD5 and SHA-1.
Both soon were present everywhere without anyone questioning them specifically, though a few old masters noted from
their offices that they had been created pretty fast a few years ago to justify a visiting research grant between universit-
ies. In the boom of the Internet, self-proclaimed security engineers with 2 months experience in cryptography imple-
mentation but soon-to-become MBA accredited businessmen took appropriate action to ignore entirely these (soft)
academic warnings and wire these free (as in free beer) algorithms MD5 and SHA-1 in every networking protocol they
could find.

Starting 2004, theoretical advances in cryptanalysis, coming from the far-east, raised doubts on the collision resistance
of MD5. The next year, cryptographers improved the attack, retracted their trust in MD5 (with demonstration of actual
collisions for meaningful documents) and started to raise doubts on SHA-1. Previously mentioned engineers and busi -
nessmen alike started to register to scientific conferences on cryptography for a few years in order to get free advice on
the attitude to adopt but probably failed to get the spiritual illumination they were looking for. The number of attendees
came back to normal after a few years. The computer industry really does not want to learn these dangerous things
which can kill a business with a bunch of algorithmic improvements on a few mathematical functions60.

Fortunately, the attacks on MD5 and SHA-1 were probably not successful enough to compromise the implementations
based on them a few years before. However, they were potent enough to require a stop in their usage and the search for
an alternative. This alternative did not really exist at that time so a competition was started by the usual standardisation
organization in this area (NIST). The interim could be assured by a variant of the less problematic algorithm with a
much longer fingerprint size: SHA256.

NIST started the competition in 2007/2008, in order to select an algorithm that would become SHA3 and the next
standard in the domain ; but wisely did it at a normal and calm pace so that the whole competition provides many pos-
sible alternatives and a better final standard choice.

Five finalists were selected among a dozen of initial candidate algorithms, among which some of them were coming
from research projects anterior to the whole affair61. Among these finalists, it is the one initially named Keccak that was
finally selected after international review as the new (American) standard cryptographic hash function.

2.3.4.2 SHA-3 & co.
SHA-3 (ex-Keccak) is a pretty fast hash function. It specifically allows for even faster hardware implementations (the
main motivation behind its selection apparently among the other close finalists).

Keccak now SHA-3 has been studied for several years, only, but its adoption has been extremely fast (like for AES).

Therefore, nowadays, many people probably put all their faith in the RSA+AES+SHA-3 cryptographic triplet. In case
you did not learn anything about irrevocable algorithm selection and one size fits all security devices, please start again
at 2.3.4.1.

58 Among which Samhain is a popular one in the GNU toolkit.
59 www.tripwire.com
60 Though bitcoin iterated hash systems and multiple magnitudes money multiplication properties raised renewed interest some

years later, but still little appropriation of actual knowledge about failure potential.
61 Like the Whirlpool proposal, which further demonstrates that for researchers MD5 and SHA1 never were the only choices in

2000 ; neither any other combination of algorithms in the readers current time frame.

16

http://www.tripwire.com/

Embedded systems and computer security

2.3.5 Signing
Electronic signature, or authentication, is a security function which makes heavy usage of cryptographic algorithms.
Without going further into this topic, we present two methods for generating a message signature and their respective
use cases.

We denote Ks the signing key and Kv the verification key.

First, one can consider symmetric signature using a symmetric encryption algorithm and, in this case, Ks = Kv. For
example, the last block of a DES encrypted cryptogram using CBC mode is a signature. Both the signing and verifying
party must trust each other as the second, knowing the key, can generate a valid signature too for any input. This type of
electronic signature is thus useless in front a judge (a third party) in case of later disagreement between signing and
verifying parties ; though it is useful to prevent foreign alteration.

Asymmetric electronic signature schemes correspond to Ks ≠ Kv. In this case, a signing protocol may consist in taking
the fingerprint of a message using a cryptographic hash function, then signing this message using a public key. Thus,
we have Ks = Kd and Kv = Kc62. In this case, the signature can be verified by third parties (if they hold the public key).

This type of signature mechanism can be used to protect public key directories : each directory entry is signed by a cer-
tification authority. Certification authorities keys can be further organized in a directory hierarchy. This is the approach
usually found in public key infrastructure systems (PKI) like X.509.

One last important point for electronic signature is linked to use cases. It is pretty important for the signing party to
check entirely the signed document63. But this is not so straightforward with electronic documents. Tricks available for
a malicious third party when confronted with (complex format based) electronic documents are more numerous and
probably more efficient than the usual “fine small print” sometimes found in paper contracts. In practice, one still needs
to be pretty prudent with electronic signature schemes when they are used with complex file formats or exotic soft -
ware64.

2.3.6 Other topics
We glanced at the most common topics of cryptology. The reader should not think that this field is limited to encryption
algorithms or hash functions. Other algorithms are studied in this field, for example :

• steganographic algorithms which aim at hiding information into other data ;
• watermarking, which aims at incorporating non-removable (and possibly invisible) marks in data ;
• secure random number generation, with good properties against attackers predictions ;
• prime number generation ;
• escrow systems ;
• voting systems ;
• secure timestamping ;
• secure destruction (or erasure) of data ;
• and secure communication protocols, which is a whole field per se with key exchange or initialization protocols,

mutual agreement, secure consensus, zero-knowledge proofs, etc.

2.4 Introduction to mandatory security policies
In the ITSEC, the “system security policy specifies the set of laws, rules and practices that regulate how sensitive
information and other resources are managed, protected and distributed within a specific system.” ([ITSEC91], 2.9)

We consider that a security policy must define :

• security objectives, that is to say confidentiality, integrity or availability properties expected from the computer
system ;

• and security rules that allow to change the system security state, and which are imposed on the system in order to
reach these properties.

A security policy is sane (consistent) if, starting from a secure state where such properties are satisfied, it is not pos -
sible, without violating some security rule, to reach an insecure state where such properties would not be satisfied.
Security objectives and security rules are related to the security needs identified in the system. Security objectives
describe the expected properties and define what a secure state means inside the system. The specification of these
objectives usually necessitates notions like permission, interdiction or obligation and how they apply to the system.

62 Note the signing step corresponds to a decryption operation.
63 Because you never know what can be hidden in the small characters at the bottom of the page... Relax. We are just speculating.
64 Faced with the typical word processor document with modification marks for example, how would it be possible to guarantee

that the signing party actually checked and signed all modifications for example ? Contrarily, simple text signing inside a mail
client software sounds easier to achieve.

17

Embedded systems and computer security

Security rules describe more precisely how basic security mechanisms are used inside the system. If specific security
attributes are introduced, these rules define how they are to be manipulated. The set of security rules is a specification
of how it is possible to manipulate the security state inside the system. Some rules may be introduced for the specific
purpose of whole policy validation.

A security policy can be developed in three main dimensions : physical, administrative and logical.

A physical security policy defines everything related to the physical situation of the protected system. More specifically,
it defines its critical elements and the protection measures targetting prevention of theft, aggressions, hazards like fire,
etc. Given its target, a physical security policy primarily describe system elements from a physical point of view and
define protection objectives. If such objectives are not reached, a physical intervention is usually necessary (like armour
reinforcement, adding a locking system, etc.).

An administrative security policy is a set of procedures that define everything security-related inside an organization.
Functions distribution in the organigram, task management and functions sharing are part of that, along with a precise
definition of the associated powers. Some of the security objectives that may be found in these policies aim at prevent -
ing abusive delegations or guaranteeing a certain level of separation of power for certain activities.

The logical security policy deals more specifically with the information system. It describes logical access control and
define general security access rules. The logical security policy is further refined in various instances associated to dif -
fering steps in the information system. A user accessing the system controlled under the policy first must identify him-
self or herself and then prove that he or she is actually the user he or she claims. These two steps are associated to the
identification and authentication policy. Once both steps are completed, the authorization policy defines the operations
one user is allowed to do inside the computer system.

2.4.1 Security models
Most formal works targeting computer security modelling have been associated to authorization policies. In order to
define security objectives, these authorization policies introduce dedicated modelling elements. Most of the time, they
start with a high level division of the system between its active entities, called the subjects, and its passive elements,
called the objects. Additional security attributes may also be introduced in the model (security levels for example in
multilevel policies). Sometimes, specific modelling methods are introduced to represent the system (like in control-flow
policies for example).

Most security models found in the literature are associated to specific security policies : for example, a lattice is usually
associated to multilevel policies attributes.

Using a security model guarantees to the user that the way security is represented in the system description is not
ambiguous and possibly can be proved conforming to the security objectives defined in the overall security policy. The
model choice is motivated by operational reasons: the need to reflect as simply as possible the mechanisms available in
the system. Finally the expected security properties should be verified, at least unambiguously represented, in the
chosen model.

We think that, furthermore, it could be interesting to be able to represent in the security model what can occur when a
violation of the security objectives is observed. Usually, classical models do not take into account this approach and
clearly favour the expected security properties verification.

2.4.2 Mandatory and discretionay access control policies
Authorization policies, are classified in two main categories : discretionary policies and mandatory policies. Such a dis-
tinction is pretty influential in practice. In both cases, we partition the system entities into two categories : active entit-
ies called subjects (users, processes, etc.) which manipulate65 information and passive entities or objects (documents,
files, etc.) which hold information.

In a discretionary policy, each object is associated to a specific subject, its owner, which can manipulate access rights at
his or her discretion. The owner of some information can thus freely define and transfer access rights to himself or
another user. The Unix filesystem access rights is a classical example of such a discretionary access control policy. If
we suppose that user u1 owner of file f1 trusts user u2 but not user u3 ; u1 gives a read access to u2 over file f1 but not to
u3. However, in this case, u2 can make a copy of the data embedded in file f1 into another file f2 which he owns directly.
Then, he can freely give u3 a read access right over this copy. This is an information flow that contradicts the initial
security objective formulated by u1, but it is impossible to control it within the framework of a discretionary access con-
trol policy. Similarly, a discretionary access control policy cannot prevent situations associated to Trojan horse soft -
ware. A Trojan horse program (or Trojan) is a program that, while performing an innocuous or legitimate function, also
performs on behalf of the user executing it another covert function contrary to the security policy of the system. For
example, a program that mimics the normal operation of a login system can fool a user into communicating his or her
actual login password to a third party while trying to perform a normal session initialisation66.

65 Observe or alter.
66 The fake login software then probably bails out as if the user had made an error to perfect the illusion.

18

Embedded systems and computer security

In order to solve such problems, mandatory policies impose, in addition to discretionary rules, new mandatory security
rules that aim at ensuring such general security properties. For example, new security attributes (informally associated
to security levels) may be associated to data containers and propagated with each manipulation or creation of informa-
tion. Only those users specifically associated to a given security level would then be allowed to manipulate or access
the information in these containers. Such mandatory rules enforce global system properties (for confidentiality or integ-
rity). They may come as an addition to conventional discretionary security rules (which offer a convenient method for
manipulating access rights inside one level). Therefore, a user will only be allowed to perform an action if both mandat -
ory rules and discretionary access rights allow it.

Classical examples of mandatory policies are the DoD multilevel confidentiality policy formalized by Bell - La Padula
[BLP75], the Biba integrity policy which follows the same guidelines for integrity assurance or the Clark&Wilson
[Clark&Wilson87] policy which targets some commercial systems. Some other examples will also be found in the
forthcoming sections.

2.4.3 Discretionary access control policy modelling
In this section, we present the most common models found in the literature and associated to discretionary policies.
These model are general enough to represent mandatory policies, but those are usually associated with other specific
models more suitable for reasoning about them and their mandatory rules, presented later in this document.

2.4.3.1 Models based on the access control matrix
The notion of an access control matrix was first introduced by Lampson in 1971 [Lampson71]. In his model, the access
control matrix (or more precisely, the array) is dedicated to the representation of access rights. These models are struc -
tured around a state machine where each state is a triplet (S ,O , M) , with S a set of subjects, O a set of objects (with
S⊂O) and M an access control matrix. Matrix M has a line for every subject s, a column for every object o and

M (s , o) is the set of access rights that subject s holds on object o. The access rights are taken inside a fixed finite set
A, defined in the security policy, and corresponds to all the operation a subject may perform over an object. The access
control matrix is not fixed, it evolves with system transitions, with the creation of new subjects, new objects or the
operations performed by users. All the actions that modify M change the system security state.

S={s1 , ... , sn} O={o1 , ... , om} A={a1 , ... , a p}
n≤m S⊂O

M i∈⟦1 ...n ⟧, j∈⟦1 ... m⟧=M (si , o j)={α1 ,... ,αr}/
αk∈⟦1 ...r ⟧∈A

s i is authorized to αk∈⟦1... r⟧ over o j

Most systems based on this modelling add rows or columns to the access control matrix each time a new process is cre-
ated to act on behalf of one user or each time a new file is created 67. Those new lines or columns are initialized with
default values as specified in the user configuration files. Later on, a user can change the access rights associated to
files he created (especially in a discretionary access control policy) but he does not directly operate on M. As a matter
of fact, these access rights modification operations must be legitimate and they may also be submitted to additional con-
trol rules (like those impose by a mandatory access control policy). Hence, the user performs these operations using
system utilities that only make them if they are conformant to the system authorization scheme.

The access control matrix model was a basis for a lot of subsequent work.

a - The HRU model

Harrizon, Ruzzo et Ullman used Lampson access control matrix model in order to study the feasibility of the problem
of the verification of security properties represented using this model. To conduct their, they considered a specific
security model, the HRU model [HRU76], similar to Lampson but where only a subset of the matrix M modification
commands are considered, of the following form, where a (i)∈A :

command α(x1 , x2 , ... , xk)
if a '∈M (s ' , o')∧ a ' '∈M (s ' ' , o ' ') ∧ ...∧ a(m)∈M (s(m) ,o(m))
then op1; op2 ; ... ; opn

end

Table 1: HRU command format

67 Si it is not really a matrix with fixed dimensions in the strict mathematical sense ; it is nearer from a 2-dimensions dynamic
array like those found in programming languages.

19

Embedded systems and computer security

x i is a parameter of command α and each op i is an elementary operation among the following ones (where
semantic conforms to denomination) :

enter a into M(s,o) delete a from M(s,o)

create subject s delete subject s

create object o delete object o

Table 2: HRU elementary operations

Given an initial configuration Q0, an access right a, we say Q0 is secure with respect to a if there is no sequence of com-
mands that, executed starting from state Q0, can bring access right a into a cell of the matrix where it is not already.
Demonstration of this property established the protection problem. Harrizon, Ruzzo and Ullman first demonstrated two
founding theorems with respect to the protection problem complexity :

• the protection problem is undecidable in the general case ;
• the protection problem is decidable for mono-operation systems, systems where all commands contain only one

elementary operation.
With additional constraints on the command allowed in the system, several other decidability demonstrations have been
proposed. However, since their seminal presentation in the context of HRU, these two first properties have clearly iden-
tified some basic problems with computer security. On one hand, a model like HRU without restrictions can represent a
wide array of security policies, but then there is no general mean to verify such policies properties. On the other hand,
even if he may be possible to manipulate it for demonstration, the mono-operation HRU model is too simple to repres -
ent practical usable security policies. For example, in a mono-operation system, one cannot represent security policies
where subjects that create objects are given specific access rights, as there is no elementary operation that can simultan-
eously create an object and associate access rights to it. Furthermore, decidable does not mean verifiable (especially
within reasonable time).

b - The Take-Grant model

Various variations inspired by HRU were proposed later on in order to address the representation of a security model
expressive enough to represent complex authorization policies, but nevertheless easy to manipulate mathematically.

The Take-Grant model, introduced in 1976 is a first variant of HRU [Jones76], built by restricting available commands.
Commands should be taken from four main categories :

• commands of create type which allow to create an object with an initial access right from a subject on this
object ;

• commands of remove type which allow to retract an access right from one subject over an object ;
• commands of type grant which allow any subject holding an access right over an object as well as the special

right g over another subject to grant that access right to that latter subject ;
• commands of type take which allow any subject holding a special access right t over a subject to take any access

right this subject holds over objects.
These four categories lead to define four new commands for every basic access right defined in the authorization
policy. The special access rights t and g, and the associated take and grant rules, are related to these additional rules
imposed on the authorization scheme in order to control the system security state evolution (ie. the access control mat -
rix modifications). These new rules also guarantee that the Take-Grant model offers a protection problem decision
algorithm with linear complexity [TG77]. However, some of the assumptions underlying this model are also pretty
unrealistic: most of the achievable properties are associated to a worst case hypothesis where all users collaborate to
defeat the system security objectives. Several refinements of the properties achievable in the Take-Grant models have
henceforth been proposed in order to retract this worst case hypothesis in favour of one where one user [Snyder81] or a
subset of several users [Dacier93] only try to defeat the system security objectives.

The Take-Grant model also offers a convenient graph representation where subjects and objects are represented by
graph nodes and access rights are represented by oriented links in the graph.

c - TAM

More similar to HRU, the SPM model (Schematic Protection Model) from [Sandhu88], which also incorporates access
right types, offers a decidable subset more extended that Take-Grant. This model is also the basis of the TAM model
(Typed Access Matrix) . TAM is defined by introducing strong typing inside the HRU model.

Like HRU, TAM is undecidable in the general case. However, if the number of parameters allowed in a command
definition is limited to three, while preventing cyclic object creation, the resulting model is decidable in polynomial
time, while still being expressive enough to represent a significant set of security policies.

20

Embedded systems and computer security

2.4.3.2 Role based access controle models
A role based access control model does not directly associate privileges (in the sense of a set of access rights) to users in
the system. Privileges are associated to intermediate abstract entities, called roles. Different users can be associated to
various roles and the two relations (user, role) and (role, privilege) lead to the definition of the specific permissions
granted to a specific user. Such roles can further be organized in a hierarchy of roles, which allow for progressive and
structured refinement of the permissions granted to each role.

2.4.4 Multilevel policies
Multilevel authorization policies rely on partitions of the system subjects and objects. Each level is associated to a parti-
tion. These security levels are usually totally or partially ordered. Security objectives can be associated to confidential-
ity or integrity of objects, and they are expressed using these levels. The authorization model security rules which drive
the mandatory access controls defined in the security policy also rely on these levels.

2.4.4.1 The DoD policy
The DoD mandatory access control policy, formalized by Bell and LaPadula [BLP75], is a multilevel authorization
policy targeted at confidentiality properties. While defining the security policy, [BLP75] also introduces a lattice-based
security model which offers a formal definition of the security objectives and the authorization scheme of this policy,
and the opportunity to demonstrate soundness.

Models based on a lattice model rely on the association of different security levels to subjects and objects in the system.
We denote h(s) the security level of subject s and c(o) the security level of object o. Each security level n represents
military or governmental security designations given to people or documents. These levels n=(cl ,C) are built with
two components: one is classification or clearance cl, taken in a totally ordered set (for example : UNCLASSIFIED,
CONFIDENTIAL, SECRET and TOP-SECRET) and the other a compartment C defined as a set of categories (taken among, for
example, « Nuclear », « NATO », « Crypto », etc.)

The classification cl given to an object or a piece of data represents the risk associated to the divulgation of the informa-
tion it contains. In addition, this information is associated to a compartment C which identifies all the domains where
such information is relevant. The clearance of a user also incorporates a classification corresponding to the trust he is
given and a compartment incorporating the categories for which this trust is granted.

The security levels create a lattice partially ordered by the weak ordering relation ≼ :

n≼n ' if and only if cl≤cl ' and C⊆C '
The security objectives properties expected from this policy are the following :

• prevent any information flow from an object of a specific classification level to another object with an inferior
classification level ;

• and prevent any subject of a given security clearance to get information coming from an object whose classifica-
tion level dominates his or her clearance.

The associated authorization schema directly emanates from these objectives. With respect to confidentialy, we partition
the operations a subject can perform on an object between read and write operation, and we introduce the following
two rules :

• a subject can read from an object only if the clearance level of this subject dominates the classification level of
the object (« simple rule ») ;

• a subject can simultaneously access object o for reading and object o' for writing only if the classification level of
o' dominates the classification level of o (« -rule »).

In the Bell-LaPadula model, the system is represented by a finite state machine, where states are defined by a matrix
M⊂(S×O→ A) which associates each subject s∈S and each object o∈O to the access rights a∈A that this sub-

ject holds on this object (with A={read , write}). Each subject and each object is associated to security levels h(s) et
c(o), respectively. Two properties, associated to the two security rules presented previously ensure that a given system
state is secure :

• the simple property : ∀ s∈S ,∀o∈O , read∈M (s , o) c (o)≼ h (s)

• the -property : ∀ s∈S ,∀(o ,o ')∈O 2 , read∈M (s ,o)∧write∈M (s ,o ') c(o)≼c (o')
This security policy raises several negative concerns :

• On the one hand, the security level of information degrades constantly due to overclassification. In practice, the
authorization scheme rules impose that any information security level only increases, slowly bringing the system
two a state where only few people are cleared high enough to access these informations.

• On the other hand, this model does not represent all the possible system information flows nor does it represent
the covert channels that may exist in the system.

21

Embedded systems and computer security

One can also note that the lattice structure can be used for modelling other security properties outside of Bell-LaPadula
(most notably with respect to integrity protection).

In the figure 3, a simplified example of Bell-LaPadula policy operation is given, using a classical set of classification
and clearance levels without any compartment (i.e. with security levels fully ordered).

2.4.4.2 Biba integrity policy
The security policy introduced by Biba in 1977 is the policy dual from Bell-LaPadula where the objective is to ensure
the integrity of the system objects [Biba75]. Each level associated with a subject or object is therefore an integrity level.
The security objectives of this policy are therefore :

• to prevent any information flow between an object at a certain integrity level towards an object with a superior
integrity level ;

• and to prevent any subject placed at a specific integrity level to change any information belonging to an object
with a superior integrity level.

The authorization schema comes from these properties, considering integrity-oriented security labels and the fact that
system operations can be grouped into three classes : modification or observation of an object by a subject and invoca-
tion of a subject by another subject.

• A subject can only modify an object if the integrity label of the subject dominates the integrity label of the object.
• A subject can only observe an object if the integrity label of the object dominates the integrity label of the sub-

ject.
• A subject s can invoke another subject s’ only if the integrity label of s’ dominates the integrity label of s.

A drawback of this policy, once again dual from those of Bell-Lapadula, lies in the constant integrity level degradation
of any piece of information while the system processes it.

2.4.5 Information flow control policy
The Bell-LaPadula model represents only those flows of information that go through knowns objects (documents, files)
and does not offer much mean for identification and control of covert channels. Such a model does not consider inform-
ation flows that may reach a subject without going through specific system objects. Control flow models refers to a
wider view of the system. They do not only consider read and write operations over objects, but also potential informa-
tion flows between subjects. These models try to describe all the communication channels available in the system,
either explicit or covert.

This original approach for the representation of information flows within a system relies on the identification of the
causal dependencies that may exist between the various objects existing in the system at various points in time
[Bieber92]. We consider that an object is observable by a user reading a specific system output if this object is causally
related to this output. In this model, a system is represented by a set of points (o,t). A point represents the state of
object o at time t. Some of these points are inputs, others are outputs of the system, while the remaining points represent
the internal state of the system. This set of points may evolve in time and this evolution is the consequence of the ele -
mentary system transitions. Such a transition can, at time t, associate a new value v to object o at this point. This instant
and this new value therefore depends on a subset of the preceding points.

Such a functional dependency of one point with respect to preceding points is called a causal dependency. The causal
dependency of (o,t) with respect to (o',t') with t'<t is denoted (o' , t ')→(o , t) .

The transitive closure of relation (denoted *) at point (o,t) defines the causal cone at this point :
cone(o ,t)={(o' , t ')/(o ' , t ')→*(o , t)} .

22

Figure 3: Bell-LaPadula security policy operation example

Subject 1

Subject 2

Object a

Object b

Top secret

Secret

Confidential

Unclassified

<

<

<

TS

C

NC

readS

Embedded systems and computer security

Reciprocally, we define the dependency cone as the set of points which depend on (o,t) :
dep(o ,t)={(o' , t ')/(o , t)→*(o ' , t ')} .

Causal dependencies represent the system information flow organization. If subject s has knowledge over some of the
internal behaviour of the system, he can learn about these causal dependencies. In this case, observing a specific output
xo, he may infer information belonging to cone(xo). Reciprocally, by interfering with one input xi of the system, s may
be able to alter all points belonging to dep(xi)68.

The expected security properties that may be described in this model can be related to confidentiality or integrity in the
system. Specifically, if subject s can observe the set Os of system output xo, we denote Obss the set of all points that s
can observe in the system :

Similarly, if subject s can alter the set As of system inputs xi, we note Alts the set of system points that s can influence :

If Rs is the set of points that subject s is allowed to observe according to the security policy of the system, we can say
that the system is secure (with respect to confidentiality) if subject s can only observe those objects that he is allowed to
observe, that is to say if : Obss⊆Rs . If Ws is the set of points that subject s is allowed to modify according to the
security policy of the system, then we can say similarly that the system is secure (with respect to integrity) if subject s
can only alter those objects that he is allowed to modify, that is to say if : Alt s⊆W s .

If some security levels are associated to subjects and objects, the relation Obss⊆R s relative to confidentiality can be
obtained via enforcing two rules in the system, analogous to those defined in the Bell-LaPadula policy :

• a subject is allowed to observe an object only if the object classification is dominated by the subject clearance ;
• and, if an object o' has a causal dependency over object o, then the classification of o' must dominate the classi-

fication of o.
This model is particularly remarkable as it introduces a new approach for information flows formalization inside a sys-
tem. The main interest of this formalization is its simplicity: causal dependencies allow to describe very briefly and
strictly information flows. However, implementations of this model are rather rare and targetted at specific domains.

2.4.6 Interface security models
Rather than specifying specific mechanisms for enforcing security, interface models specify restrictions on a system’s
input/output relation that are sufficient for ruling out nonsecure implementations [McLean94]. This class of security
models deals more naturally with the dynamic nature of systems, especially networks, and relies on pretty general –
albeit rather abstract – modelling formalisms. The system model is made of all different subjects (or users) in the sys -
tem as well as the set of all execution traces associated to these users. A trace is the history of all inputs made by this
user, that is to say the ordered sequence of system states occurring after each user input (or transition or command).
Some specific commands allow to isolate the system outputs for one user and one usually primarily focus on the system
properties associated to those outputs.

The main advantage of these formal models is to allow for a better understanding of significant security properties
formalization issues. Very interesting security properties can be modelled and compared using these generic system
formalization models.

The main properties identified in the literature, associated to the main security objectives relevant to each of these
security policies are the following :

• non-interference, defined as that a group of users, using a specific set of commands, cannot interfere with another
group of users, if whatever is done by the first groupe with their commands has no effect whatsoever on what the
second group can observe on outputs. Given the system model of its formal definition, this property only applies
to deterministic systems.

• non-deducibility, corresponding to the fact that whatever the ouput observed by a low classification level user,
this ouput is compatible with any acceptable input form a high classification level user.

68 Obviously, both statements are worst-case hypothesis. However, in security engineering, one should only believe in worst-case
hypothesis ; when hypothesis are used at all. Speculative thinking is not recommended, but optimism is simply forbidden. After
all, non worst-case hypothesis are recipes for disaster ; if only from the commercial point of view because any competing
company marketing department will come out with much more appealing ideas for compromises than your own engineering
department. Marketing department imagination benefits rather than suffers from physical laws constraints (or so they say). But I
am digressing. Especially in this case, you would have to expect that the inference capabilities of your opponent are more
limited than your own if you want to further restrict cone(xo) or dep(xi). In other words, you expect your opponent to be dumber
than you are. This is not wise at all, hence the long footnote in favour of the worst case hypothesis for your enlightenment.

23

Alt s= ∪
x i∈As

dep (x i)

Obss= ∪
x o∈O s

cone (x o)

Embedded systems and computer security

• generalized non-interference, which complements non-deducibility to patch a problem associated to the fact that
non-deducibility does not guarantee that a low level user is prohibited to access high level information, provided
that they are mixed with random data69.

• restriction, or non-inference, which further restricts generalized non interference to allow for composability of
the property with respect to several non-deterministic subsystems.

• non-influence, with further complements non-interference protecting the visibility of events by non-leakage pro-
tecting the secrecy of a system state.

We present a few of these in more detail in 2.4.6.2.

Interface models rely on a system representation which is a finite state automata with observable outputs. Such a system
is built by :

• a set S of subjects or users ;

• a set of system states ;

• a set of commands or operations that can be executed in the system ;
• a set Out which elements are the user visible outputs ;

as well as :

• a function out : Σ×S→Out which represents what a given user can observe when the machine is in a specific
state, called the output function ;

• a function do : Σ×S×Γ→Σ which represents how commands alter states, called the transition function ;
• and a constant σ0∈Σ , which is the initial machine state.

If w is an input sequence or trace in this system, that is to say a sequence of commands started by users w∈traces
with traces=(S×Γ) , we denote [w] the state reached by the state machine after execution by all users of all com-
mands listed in w, starting from initial state 0. We denote ⟨ ⟩ the empty trace (no command), and, in extenso,
ν⋅γ1(u1)⋅γ2(u2)⋅…⋅γn(un) the trace w built by prefix trace (possibly empty) followed by the sequence of com-

mands (γi)1≤i≤n of performed by users (ui)1≤i≤n .

This state machine can be extended in order to account for multilevel security properties, such as those embodied in the
Bell-LaPadula model, therefore building up a system with security labels. In this case, it is sufficient to consider a state
space made of an access control matrix and access rights modification commands as those defined in 2.4.4.1. It is also
convenient to isolate the commands of that allow to perform inputs or outputs towards a user and to consider traces
built with a sequence of inputs (commands) followed by a final output operation. The set of output operations is
denoted out. As a matter of fact, it is on these specific output operations that a given security policy will focus. Each
time such a classical distinction between commands will be done in this text, the command names, such as read(u),
highin(u), lowout(u), lowin(u), will indicate their category without ambiguity.

2.4.6.1 Deterministic systems: Non-interference
Let h be a function providing the clearance level of users, so that h(u) is the security level (clearance) of u (cf 2.4.4.1).
Let purge be a function from S×traces in S so that :

A system satisfies the non-interference property if and only if :

This is the original presentation from the initial article by Goguen and Meseguer in 1982 [Goguen82].

An alternative formulation can be given using a partition of memory between high and low parts. If M is a memory
configuration, with M L and MH the low and high level parts respectively. Let =L be the function that com-

pares the low parts of memory, i.e. M=LM ' iff M L=M 'L . Let (P ,M)→*M ' be the execution of program
P starting with memory configuration M that ends with memory configuration M’. The non-interference is also defined
for program P as : ∀M 1,M 2 : M 1=LM 2 ∧ (P ,M 1)→

*M ' 1 ∧ (P ,M 2)→
*M ' 2 ⇒ M '1=LM '2

It is not always easy to compare precisely the Bell-LaPadula model and models based on non-interference. However,
one can note that, in general, the Bell-LaPadula model offers weaker properties than non-interference in the sense that
the latter prevents the occurrence of some covert channels that would be available with the standard implementation of

69 In a non-deterministic system, non-deducibility does not make any difference between random noise added to information and
an actual cryptogram, intelligible with the corresponding key.

24

∀ u∈S ,∀w∈traces ,∀c∈Γout out (u , w⋅c (u)) = out (u , purge(u ,w)⋅c(u))

purge (u , ⟨ ⟩)=⟨ ⟩

purge (u ,hist⋅command (u'))={purge (u , hist)⋅command (u ') if h (u)⩾h(u')
purge (u ,hist) if h (u)<h(u ') }

Embedded systems and computer security

primitive operations from the Bell-LaPadula model. On the other hand, non-interference allows the implementation of
operations that would not be permetted by Bell-LaPadula, like the possibility for a low level (in a confidentiality
policy) user to copy directly a high level file into another high level file (provided he does not access the file himself).
In both cases, however, the non-interference property seems to correspond better to the intuitive notion of security
(confidentiality) than the Bell-LaPadula model70.

However, this initial model suffers from several limitations. On the one hand, non-interference is a very strong property
and can be seen as too strong: for example, it leads to prohibits the usage of encrypted communication channels
between high level users (even perfect ones in the Shannon sense) if low level users can have access to the cryptogram.
On the other hand, the model only applies to deterministic systems. Despite these limitations and the implementation
difficulties, non-interference still is probably at the state of the art in terms of security guarantees for deterministic sys-
tem model security definition. Its extension towards non-deterministic systems, composability, or most recently internal
state protection, lead to multiple later work.

2.4.6.2 Non-deterministic systems : Non-deducibility, Generalized non-interference, Restriction
In order to give a non-deterministic version of non-interference, one has first to present how it is possible to describe a
non-deterministic system. With the former modelling, one can consider that an execution trace is an acceptable (pos -
sible) behaviour of the system. In this case, a non-deterministic system is described by a set of acceptable system beha -
viours. In order to define later properties, one also has to make a distinction between two interaction levels with the
system (in the sense of Bell-LaPadula) that corresponds to a high and low confidentiality level.

Non-deducibility, proposed by Sutherland in 1986 [Sutherland86], corresponds to the fact that, for any pair of accept-
able traces T et T', there must exist an acceptable trace T'' that gathers : the low level commands of T (in their original
order), the high level input commands of T' (in their original order), and all other commands. This property corresponds
to the fact that everything a low clearance user observes is compatible with any input from a high level user.

Even if non-deducibility is a more general property than non-interference for a specific system ; given that it does not
imply that the system be deterministic, it is not equivalent to non-interference for deterministic systems with more than
two users. In this case, non-deducibility is weaker than non-interference.

This analysis and subsequent problems identified by McCullough in 1987 [McCullough87] led to the introduction of an
alternative version, called generalized non-interference. A system exhibits the generalized non-interference property is
and only if, given an acceptable trace T for the system and an altered trace T’ built by inserting or removing a high level
input from T, there exits an acceptable trace T’’ built by inserting or removing a high level output of T’ just after the
alteration of T leading to T’. (Any acceptable trace with a high level input is equivalent to another acceptable trace with
some high level output instead, located at the same place in system history.)

Non-deducibility and generalized non-interference though still both suffer from a major drawback : none of these prop-
erties is preserved by composition of two systems. The property of restriction was introduced as a way to solve this
problem.

A system exhibits the restriction property [McCullough90] if and only if, given an acceptable trace T in the system, and
an altered trace T’ built by inserting or removing a high level input from T, there exists an acceptable trace T’’ built by
inserting or removing a high level output from T’ just after the alteration of T leading to T’, and after each low level
inputs which follow the alteration of T. (Any acceptable trace with a high level input is equivalent to another acceptable
trace with some high level outputs instead, located at the same place in system history, or after any other later low level
output sequence.71)

70 You wouldn’t have thought that all these maths definitions could be more intuitive than military ink stamps, don’t you ?
71 So, chatting is an effective way of demonstrating the security of your discourse, even if you repeat high level data, provided

that you hide the right item…? Many natives of southern Europe seriously implement the idea.

25

Embedded systems and computer security

3 Embedded systems and security

3.1 Specificities (or not)
As a first step towards finally focussing the course on its original title, we should be considering first defining the target
of our security-oriented focus: embedded systems. Over the first years of exploring the field, characterizing embedded
systems proved to be more difficult than initially thought. Fortunately, bringing up the topic of computer security in
these contexts is less problematic.

3.1.1 Definition attempts
As a matter of fact, it seems those building, buying or using embedded systems show much difficulty defining them and
alleged specificities with respect to general purpose computing devices – especially nowadays with such devices ran-
ging from kids toys or game consoles to enterprise data servers. The typical simple question “What really makes your
devices so specific ?” frequently generates some anxious silences (especially among COTS fanatics).

A characterisation attempt was nevertheless attempted, if only to fill the void raised by the question. The easiest differ -
entiation is the clarification of three main cases where people speak of embedded systems generically while they are
meaning that the system is either:

• a real-time system, that is to say a system with timing deadlines to respect – deadlines in the sense that the ser -
vice offered by the system is useless if it is not delivered before the deadline ;

• a critical system, that is to say a system which failure may have catastrophic consequences (in fact a system
with safety requirements according to [avizienis2004] terminology) ;

• a computer system embedded in a vehicle.

These three dimensions are relevant to a given system characterization, and they are orthogonal, in the sense that a crit -
ical system may also be a real-time system embedded in a vehicle. So we should have a clear understanding of these
attributes when delimiting our systems. But alone they may not be sufficient to characterize the kind of system we usu -
ally have in mind72 which may exhibit some more exotic features.

An important dimension of embedded systems seem to be linked with their energy autonomy. Sometimes they are des-
ignated as autonomous systems, not really to highlight their autonomy but more to underline their dependence on a lim-
ited reserve of energy, hence their limited autonomy. Hence, a requirement for embedded systems seem to be that they
perform correctly (and possibly regularly) when distant from permanent power plugs. They are in need of electric bat-
teries as a consequence and such limited energy reserve has impact on the overall device operation (if only to save
energy to extend their operation time).

Another aspect of such systems is the relative lack of interaction with any (human) user. Compared with general pur-
pose computer systems, it is usually thought that such systems operate with little physical user intervention. This may
be due to distance as in the (extreme) case of deep space probes or the most common case of the inaccessible places of
a vehicle (plane, train, car) while moving ; but it is not necessarily a physical distance. The system may also be hidden
from the surrounding users and, even if it provides a service to them, they do not or can not interact physically with it
outside of the provided service functions. This is for example the case with hidden CPU (like a smartphone baseband,
its smartcard SIM), with RF or WiFi access points and more generally network infrastructure equipment (thought in
these cases, human intervention is still possible, only infrequent and costly), RAID cards, home automation, security
devices (when the owner is not the access rights holder), etc.

These aspects also show us that these systems are usually integrated systems, in the sense that they usually combine
specific software with a more or less specialised hardware platform. Thus, these embedded systems are not only soft -
ware and they may be interesting to tinker with from the computer hacker 73 point of view (probably including the
author). From the security point of view, adding computer hardware insecurity to software insecurity is an interesting
case too, pretty promising from the enterprising engineer perspective, though more of the nightmare variety at the
moment from the IT security point of view.

Finally, now most of these embedded systems are communicating devices, which form a distributed system. They are
not point to point actuating devices anymore, they have more or less sophisticated networking interfaces, more and
more regular network interfaces off the shelf. They do not communicate directly, physically, with a user, but they com-
municate with other computers and collectively operate their function.

More provocatively, some less usual characteristics of those embedded systems can be listed. Many of these embedded
systems are sometimes lost in the organization or the enterprise, nobody remembers where they are exactly. They are
the kind of system that their owners really do not want to be stolen, in the sense that their loss will incur more than the
mere economical cost of their replacement : they hold sensitive or valuable data or service that the user does not want

72 Think of a general purpose computer used for encryption of interactive voice communication on a navy command ship for
example.

73 Note the author is also old enough to make a clear distinction between hacker (good guy) and cracker (bad guy).

26

Embedded systems and computer security

to be stolen74. Such devices may be usefully repurposed, which shows, afterwards, that they were not so specific and
probably held much in common with their original off the shelf (unsecure) counterpart.

Finally, these embedded devices are frequently manufactured in numbers, sometimes huge numbers. And all these mil-
lions of devices share the same characteristics, which raise challenges, especially for the now dominant approach to
security improvement in the industry which primarily relies on software updates.

However, all these characterizations do not really make any of those system fundamentally different from what they are
in the first place – as opposed to the sensors, actuators or mechanical systems they control – they are computer systems.
Therefore, for the moment and until we get a proper definition, we will consider that we are dealing with the security of
specialized computers.

Whether embedded systems is then only used in the industry as a buzzword to indicate that the computer is not a regu-
lar general purpose computer (at least unless repurposed first)75 is left as an open question for the reader.

3.1.2 Security aspects
A general current trend on those specialized computers is the evolution from independent isolated or very centralized
systems to regular distributed systems with networking software stacks. This raises the usual distributed security prob -
lems with authentication and authorization, not to mention consensus. At the moment, these are usually addressed prim-
itively using point to point protocols and iteration, and those approaches logically do not scale well or impose a
centralized architecture again.

But apart from this trend, especially outlined in the Internet of Objects (IoT) phenomenon, these specialized computers
also exhibit multiple security requirements that are not so common in the field of general purpose computers, especially
when combined. Indeed, when dealing with embedded systems, we observe such security requirements as :

• Supplier protection (like in the cellular networking content where the networking operator want to protect its
network infrastructure) or protection of the content owned by the supplier of the system (especially multime -
dia content).

• The embedded system environment protection, whether it is the vehicle itself and its passengers, or the vehicle
resources (e.g. for a satellite, where the payload maybe more valuable than the satellite itself).

• The protection of the embedded system owner, who usually legitimately76 thinks his requirement as first prior-
ity.

• The protection of the embedded system itself, even against direct physical threats of an attacker possibly dis -
guising as a legitimate owner (or threatening him or her) – this is especially the case for security-specific
embedded systems like smart cards or cryptographic chipsets (dedicated board).

• And finally, the protection of a whole embedded information system made up of several networked specialized
computers.

Therefore, such requirements are not limited to file access rights management or network TCP connexion authorization
like most IT managers would love to restrict them. They are not even centered on the end user of the device. Further -
more, we are currently seeing an evolution of the security requirements exposed by such systems from some security
functionalities to add to the systems to the need of security management at the design and architectural level. This scope
extension is further motivated by some of the challenges faced by these specialized computers with respect to security.

3.1.3 Challenges
The motivations for evolution first include a widening attack surface due to the increasing complexity of embedded
systems. These now offer numerous hardware components, complex software and multiple auxiliary channels. These
new items are all potential targets for an attacker and with the increase in complexity seldom comes a comparable
increase in the validation or protection effort.

Such systems usually have limited computing resources, which makes the most straightforward protection mechanisms,
especially those heavily computation-based like cryptography, much less straightforward to use than expected. Embed -
ded systems have limited resources in general and these limitations impact the realistic security mechanisms, especially
those some engineers would simply like to import as-is from desktop computers 77. Energy is most commonly identified
first as a limiting factor, but storage space too can be very problematic and not only in permanent storage. For example,
public key signatures necessitate a few kilobytes of data for storing the signature, in many cases this is several times
bigger than the entire data message a sensor-oriented embedded system would like to send on its network.

74 And that, consequently, an attacker may probably find interesting to steal...
75 And that some engineers want to set up their own niche on the job market associated...
76 But possibly erroneously.
77 A situation which is, in fact, totally normal. Why would off-the-shelf security software be suitable to these so-domain-specific

embedded systems?

27

Embedded systems and computer security

At the moment, standards and industry-standard components are evolving pretty fast with the technology of embedded
systems which raises additional challenges for the security mechanisms that they could incorporate. This is probably
not specific to security issues as these specialized computers are evolving very fast anyway.

Finally, as we saw previously, different security functionalities are expected by the various “users” of these systems,
where by user we do not only mean the end user, but also designers, manufacturers, suppliers, operators, governments,
etc. The security properties expected by so different users would necessitate very flexible features that are not available
in simple security systems. For servicing these complex requirements, practical security mechanisms technically avail -
able on these systems are not so varied.

Embedded software is getting more and more complex and make frequent use of efficient programming languages (like
C or C++) which are not specifically secure. In some other areas of software engineering for embedded systems some
of the proposed programming languages (like Java) have been designed for extension, but dynamic updates with code
execution is really a can of worms when considering security. Full security validation of virtual machines with sand -
boxing is, of course, a topic à la mode ; but we fear this field may stay open a long time78. And networking with latest
embedded systems is using common networking technologies, like WiFi, bluetooth and the Internet.

The combination of increased complexity, extensibility and networking is, in our opinion raising challenges for security
management. There is nothing really specific to embedded systems here in fact, but highlighting that the security of
those specialized computers is not going to be any easier than for other computers seems to be an underestimated real -
ity check.

3.2 Physical attacks
As embedded systems fully includes the physical part of the computer, physical attacks are worth mentioning in a study
of specific security issues. Furthermore, a focus on security-oriented embedded systems 79 allows us to highlight pretty
interesting physical attacks targetting the cryptographic processors of smart cards which, in our opinion, provide very
instructive examples of complex but deadly vulnerabilities that computer systems may exhibit.

But let’s start first by listing conventional classical physical attacks80 on computing devices that may allow to uncover
their most heavily hidden secrets. We may first list direct hardware attacks, like:

• micro-probing, which involves attaching small wires to internals of semi-conductors to have access to their
internal state ;

• substrate deconstruction, which involves pealing progressively the layers of a semi-conductor in order to
reveal its internal structure, and possibly also its internal state, depending on the environment (at very low
temperature levels, the charged state of a logical gate may stay visible for some time) ;

• or, more prosaically but probably more familiar to embedded systems designers, access to debugging inter-
faces (like industry-standard JTAG , or other industry-specific interface), which may involve soldering but
may also simply imply accessing to internal connectors.

These physical attacks allow to access the internal memory of a device and consequently most of its internal data,
which is for example extremely interesting for a cryptographic chipset. It may also allow to perturb its normal operation
(in order to take advantage of the perturbation).

But these direct hardware attacks have several drawbacks:

• They are usually seen as costly with respect to other attacks, because they necessitate time, specialized equip-
ment and skills, possibly several similar target devices.

• They are sometimes destructive.

• They are usually not sufficient alone and are precursor attacks for other attacks (such as a network intrusion).

Another class of attacks targeting cryptographic processors (which are at the heart of many security kernels) is associ-
ated to the exploitation of auxiliary channels. First examples of auxiliary channel exploitation were using timing differ-
ences in computation loops of a cryptographic algorithm due to speculative execution features of the underlying CPU
(the initial Pentium). This idea was further extended to other ciphers with ideas to search for other auxiliary channels of
information to improve cryptanalysis [Kocher96], [KSWH98].

The most powerful variants are based on power consumption analysis. Two kind of attacks have been proposed: SPA
for simple power analysis, and DPA for differential power analysis. Both techniques take opportunity of the existence
of auxiliary channels to find correlation between measurements of the attacked system and secret keys contained in it.

78 It has not been solved in the last twenty years after all...
79 So specialized computers specialized in security. Double specialization! Security expert computers…
80 We did not write “common” attacks. USB keyloggers or shoulder-sniffing drones for stealing users password are intentionally

left aside. Let’s try to read the 8192-bits private key of that paranoid government contractor executive from the protected
memory of his high-end outrageously expensive smartphone in fair competition. Of course, at the moment, pirates or
cyberwarriors alike do not even need to use such costly attacks given the usual vulnerability level of any computer, their total
despise for rules of engagement and their infinite budget for the aforementioned goodies.

28

Embedded systems and computer security

Some of these attacks proved to be very efficient (especially the differential variants) and counter-measures are often
said to be very costly : they must be implemented very rigorously, they are counter-intuitive and patented with a lot of
secrecy. By the way, this means in practice that this is all we can say about these counter-measures. To be fully honest,
the reader should also refer to 1.1.1.2 c, though there is always hope81.

Both attacks are based on a simple observation, which is that the CMOS cell for a basic logical gate has a different
power consumption profile when going from 0 to 1 or when going from 1 to 0, i.e. charging or discharging. So a typical
power analysis profile (SPA) involves monitoring closely the power consumption of electronic devices, and try to cor-
relate these power variations with the computing device internal state. In initial experiments, monitoring the power con-
sumption of a smart card allowed to identify easily the time intervals corresponding to the execution of the two
multiplication intensive parts of a typical RSA implementation. Not only did it allow to identify that the chipset was
executing the RSA algorithm, but closer examination allowed to see some of the values of the internal state, which
should correspond to the prime factors of the private key. Needless to say that the leak of multiple binary parts of these
factors is a fatal weakness to the secrecy of this key, which security relies on the difficulty of big numbers factorization.

Basic defences to raw simple power analysis certainly involve adding noise to the signal or modifying the implementa-
tion to introduce dummy instructions or de-synchronization into the cryptographic chipset operation. However, noise
can be eliminating by averaging or by DPA. DPA implies computing the differences between two power measurements
curves, themselves averaging several successive measurements. Both operation will remove much of the added noise
and amplify the information available for the cryptanalysis. Consecutive attack steps are chosen to correspond to small
modifications of inputs so the information leaked shows the correlation between the modifications made and the
internal secret values. Several variants and improvements have been proposed over power analysis, with the remarkable
exploitation of noise as another usable auxiliary channel [GST2014] later renewed via old school EMA remastering
[GPPTY2016] ; but overall, the global weakness is summarized in one of the seminal articles on this type of physical
attack : Cryptosystem designers frequently assume that secrets will be manipulated in closed, reliable computing envir-
onments. Unfortunately, actual computers and microchips leak information about the operations they process. This
paper ([DPA99]) examines specific methods for analysing power consumption measurements to find secret keys from
tamper resistant devices.

Cryptosystem designers very probably learned from the design mistake they made two decades ago. Whether secure
systems designers also learned something probably still needs to be confirmed ; but secure computing needs to take into
account hardware as well as software protection and this is especially prominent when dealing with those specialized
computers appearing in embedded systems.

Trusted computing is an area of the computing industry which has tried several times to bring attack resistance to gen-
eral purpose computing. Somewhat similar from what you would expect from a smart-card, but not as a separate com -
ponent and with the design objective to be much more integrated into the overall computer hardware platform 82, this
industry collaboration provided a chipset which is interesting to study as a physical component for protection.

3.3 TPM
This chipset is usually designated by the TPM acronym, for Trusted Platform Module. TPM, as defined by its designers
which formed the Trusted Computing Group (http://www.trustedcomputinggroup.org/) aimed to be an open, vendor
neutral, industry standards for hardware-enabled trusted computing and security. In 2008, its promoters counted all
the big hardware vendor names of the industry.

A successor to less successful older initiatives, TPM has seen a pretty wide industry acceptance, though primarily
offered on professional product lines and now enters its second decade of existence. The first version of the specifica-
tion is TPM 1.2 and is now complemented by an up to date though not backward compatible upgrade which is
TPM 2.0. The main 1.2 vs 2.0 difference is that while TPM 1.2 has SHA1 and RSA2048, TPM 2 is designed to have
many possible algorithms. They called it algorithm agility. There is no special requirement for any implementation of
TPM 2 to support any specific algorithm, so you actually have to query a given chipset to see what it supports. Accord -
ing to some user83 The bedrock for TPM2 in the West seems to be RSA1024-2048, ECC and AES for crypto and SHA1
and SHA256 for hashes.

Accordingly, while TPM 1.2 had root keys stored inside, TPM 2.0 has seeds of these and a key derivation function.

From the point of view of a teaching book, TPM is also pretty interesting due to the availability of extended document -
ation surrounding its specification and potential use cases. Some of these use cases are now a little outdated (e.g. those
related to mobile phone operator lock-in) but this literature allows to illustrate not only the basic security blocks imple -
mented in the device, but also the way it may be used to provide some security functions. The evolution of the specific -
ation towards a TPM 2.0 version has confirmed its establishment as a hardware solution, though this success also lead
to a multiplication of application documents that does not necessarily help clarifying the subject.

81 There must be someone honest in this industry… No? And who invents such clever an attack cannot be fully bad. Add to that
the fact that the author may simply be ignorant of how to protect his chipsets from DPA.

82 And probably also the industrial objective to be just different from a smart-card, because well, it has to.
83 https://blog.hansenpartnership.com/tpm2-and-linux/

29

https://blog.hansenpartnership.com/tpm2-and-linux/
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/

Embedded systems and computer security

The generic reference architecture adopted by the TCG is a very simple computer architecture, with a CPU surrounded
by memory, a display and a communication controller giving access to them as well as other devices (fixed or remov -
able), a boot ROM and the TPM itself. The objective is to cover a wide spectrum of computing devices, including
those corresponding to embedded systems (except maybe from the energy point of view).

The fundamental trusted platform features offered by TPM chipsets are associated to the following designations (some-
times specific to this hardware community, but otherwise understandable) :

• protected capabilities:

◦ either shielded locations (protected memory, specifically designed registers, etc.)

◦ and hardware security-oriented features: key management, random number generators, sealing, etc.

• attestation functionalities:

◦ which offer various functions to certify some results, from the point of view of the TPM, to the platform
or with respect to the rest of the platform84 or simply authentication of the platform for a remote commu-
nication

• and integrity functions, called measurement, logging and reporting with associated registers and metrics defin -
itions (nicknamed PCR, for platform configuration registers) for providing proofs about the state of the plat-
form, and attesting measurements made.

Typical usage of this kind of device (in its older version) is demonstrated by its use with Linux to secure the boot pro-
cess. It is noteworthy to remark that several years were needed to reach a prototype implementation with Linux, most
certainly due to the fact that this is low level programming and that software security engineers were probably busy
elsewhere. Anyway, such an example implementation working is interesting to follow in order to have an idea of the

84 This means the TPM may have autonomous access to, e.g. the RAM of the platform, in order to perform its own verifications.

30

Figure 4: TPM 2.0 Architectural overview

Embedded systems and computer security

security offered as well as the intricacies of starting a full Unix kernel while still providing strong guarantees on the
security of the boot process (with a physical hardware element)85 :

• First, one need to enable the TPM in the device BIOS and load adequate drivers.

• Then, install the adequate software (tpm-tools and TrouSers are useful keywords in this context).

• Take ownership of your device’s TPM. Note this is a one way operation that will, once and for all, activate the
security features and give you control over them ; which also means that if you loose control, nobody may be
able to help you regain it. Nobody means nobody here. You are on your own for real. Do not forget the pass-
word.

• Afterwards you need to install and setup a TPM-aware bootloader, most probably TrustedGRUB and most
probably after having compiled it yourself86. Setting up this alternative bootloader will allow you to examine
in more detail the operation of the TPM:

◦ First restart successfully, of course

◦ And then have a look at the various registers holding “attestation values” (i.e. some form of signature,
most frequently in the simplest form of a secure hash function result, e.g. 2.3.4.2). These registers (PCRs
in TPM 1.2) are used to check all the parts of the system participating to the boot operation :

▪ The BIOS and ROM code itself,

▪ the master boot record and stage187 boot information,

▪ then the bootloader code verification (stage 2, usually in 2 parts)

▪ then the command line arguments and the optional ones entered via the boot shell prompt (checked
and signed probably after verification of the boot loader)

▪ then several registers containing the verification of all the files configured to be checked by the TPM,
including the cricital files associated to the operating system startup (for example kernel, initrd, mod-
ules under most Linux distribution).

▪ At this step, several registers of the TPM may already be dedicated to the boot procedure security,
others should still be available for further usage by security services of the operating system.

• To use some TPM features, one could then try to add some new files to the boot checking procedure and verify
that alteration of these files will generate detectable warnings at startup time.

• Of course, do not alter the critical boot files or risk not to be able to boot. Note that, contrarily to many embed -
ded devices, un-bricking procedures may not be available or may require that you recalculate signatures of
existing files (hence activate the TPM).

• Up to this point, a Unix kernel has been started with decent security controls (more on the potential vulnerabil-
ities later) but it remains to be used. Obvious use cases would involve key management functions for asym-
metric cryptography, filesystem encryption, user key ring management, etc. See the appropriate project, if it is
still alive. Maybe start your own, preferably in the embedded systems domain, though a TPM may not be the
ideal solution in these cases.

A final issue is associated with TPM and TCG related technology. It is more of a political debate than a technological
one, though the risk analysis aspect is somewhat interesting in these. Many people nicknamed the trusted computing
terminology as treacherous computing in order to outline the fact that these industry technologies also find their roots in
(mostly USA) governmental-funded projects and that the design choices carefully protect the ability from state authorit -
ies to find some path into the security of the system. Neither these accusations nor their rebuttals are usually backed by
verifiable information, so we are still left with little facts to analyse in this matter from an objective 88 point of view,
though we can always simply read the specifications (the old version), which states that The TPM has the EK generated
before the end customer receives the platform. (…) 1. The EK MUST be a 2048bit RSA key (…) c. The PRIVKEY
SHALL exist only in a TPMshielded location ([TPM2007] rev. 103, section 5 lines 1004-1040). Through this specifica-
tion, we see the initial core key of the TPM 1.2 is based on a reasonably secure asymmetric encryption algorithm (e.g.
according to NIST [NIST80057]), stored in the protected location, but generated before the chipset is sent to its end
user hence under control of the manufacturer.

85 Note also we focus on TPM 1.2, no known workflow for TPM 2 are really clear, though support was added to linux in
kernel 4.0. Check: https://blog.hansenpartnership.com/tpm2-and-linux/ for the latest information on T2.

86 If you do not know how to compile TrustedGRUB and you did not take the previous point warning seriously, please, stop the
experiment entirely. (Though the author suspects you are not reading footnotes either.)

87 The stage 1 of the bootloader is the initial small program that loads the bootloader… Stage 2 is the bootloader itself, which
loads the kernel.

88 A factual baseline to which we will try to stick to like an adhesive dressing ([Hergé56], pp.45-49) in an educational document
like the present one.

31

https://blog.hansenpartnership.com/tpm2-and-linux/

Embedded systems and computer security

4 Software development and security
Once upon a time, a world writeable memory access device vulnerability was reported on a commonly available smart-
phone (CVE-2012-6422). Somehow remarkable was the fact that this security problem was very probably deliberately
introduced in the phone software (the actual reason is still not know to the author, most probably for “convenience”)
and affected millions of users (most probably some are still affected and most still do not care at all). So, from the point
of view of this text, the most noteworthy aspect of this security event is a remark of another security engineer, summing
it up all nicely with respect to the most common attitude towards software development and security in our age:

“My experience from most places: nobody cares, nobody reviews. If a problem is discovered later, we will fix it later –
why worry now and delay the release? What "/dev/mem"?? Enough with this mumbo-jumbo we have a release to make
and management bonuses to earn.

In fact people who do care and worry about esoteric things like "security", or "good design" or "code quality" are uni -
versally viewed as trouble-makers or ivory tower idiots both by management and most of the engineers. It is an uphill
battle even to do what used to be the baseline 10-15 years ago.”89

All warnings given to the reader on the somehow slightly desperate perspectives of this section, let’s climb the ivory
stairs and throw a few arrows on the wealthy software merchants wandering nearby. All those leaving the trouble-
makers team, even for pragmatic reasons, before (and including) section 4.4 will be thrown additional stones.

4.1 Security requirements engineering
Security requirements definition is not an exact science as it heavily involves capturing users concerns and evaluation
of assets values. Furthermore, it is not so frequently done. So we mostly try to list general guidelines and some com -
mon pitfalls to avoid in order to obtain such requirements in the best possible way.

The first thing to note is that requirements elicitation should be done as early as possible with respect to a project or an
application. Most specifically, it has to be completed at the application design phase. Some even say it should be started
earlier, because security issues should theoretically already have been studied at the project feasibility stage. However,
completion of security definition at the application design phase is a more realistic objective and most sensible because
that’s the only way for security to stay cost effective. Adding security to a design in production is either a technical
nightmare (i.e. it is not done) or a money sink (which does not survive very long in cost-conscious environment, though
some cases have shown extreme resilience to those added costs in recent years). In most other cases, it is our feeling
that including appropriate security features can stay cost effective. With respect to this statement, we leave aside the
most stringent security requirements imaginable in academic studies or security-critical systems ; which still cannot
benefit from the incremental value of decades of public effort like in other areas of computer science. But if we focus
on specific pragmatic concerns and system functions, achievable security can be at a pretty high technical level using
affordable technology. What probably cannot be solved is the impossible (and so common) industry demand of adding
security afterwards. If you can afford to add security later, then you can certainly live without it entirely and you prob -
ably already decided to do that, so just find and read another book and most probably hire a marketing assistant to
counter a competitor FUD communication90. If you study the security of your application, do it before you start coding.

When security requirements are considered, definition documents have a strong tendency at the moment to contain gen-
eral lists of security features, like passwords constraints, firewalls installation requirements, antivirus software budgets,
etc. Unfortunately, like for any functional feature, we have first to outline that implementation mechanisms are not
requirements. Such formulation is simply erroneous and these mechanisms are mentioned as an implicit intent to satisfy
unstated requirements that necessitate further explanation : the need for authenticated access (with a certain quality
level), the need to protect some specific data, the need to communicate with integrity guarantees with some third party,
etc. This pitfall is probably due to a strong lack of practice in the domain of security requirements definition, but off-
the-shelf security features or devices should be banned from requirements documents to make place for better analysis
of actual security needs of the industry, company, users, etc. (and those incapable of eliciting these requirements should
be replaced by those who have the knowledge and who do not only want to sell something specific).

Security requirements are also frequently defined in an isolated section where they exist by themselves (frequently
copied from a generic set, which exacerbates the previous trend). Though this is not necessarily bad in itself, attention
should be given to the fact this does not reveal a lack of analysis and adaptation to the target. Security requirements are
requirements and like all requirements should be extracted from an elicitation process that allow user inputs and spe -
cialization to the actual target. It is there that the legitimacy of the security constraints finds its true roots and that users
can accept security rules (because yes, that’s perfectly possible that users agree with security rules and cease seeing
them negatively – it should be the norm in fact).

89 https://lwn.net/Articles/529496/
90 In the worst case, stop lying to yourself about your security requirements, get yourself a conscience and retire urgently your

dangerous systems before someone gets hurt. Nothing technical or even process oriented here.

32

https://lwn.net/Articles/529496/

Embedded systems and computer security

In requirements engineering, a lot of attention is given to what the system should do. That’s logical. Security necessit -
ates a change of point of view that requirement engineering should pay attention to. Security requirements are associ -
ated to what the system or the application should not do (in any case) [MMEBA2008]. The perspective change is
necessary, but uncommon and uncomfortable for many users, so attention should be paid to how these requirements are
going to be captured. Original techniques may be needed. (No one said such techniques should be depressing.)

Another view on the classical project lifecycle (needs, specs, devel, testing, validation, operation ; modulo the appropri-
ate variant) allows to illustrate the specificities of security with respect to projects phases.

We already underlined the first issue: security should be taken into account pretty early. Security policy enforcement
should be considered as early as in the opportunity study phase. Security needs are part of the project definition and
security properties specifications should be included in the project specification among all the other “non functional”
requirements (safety for example). Once specified, a security-specific activity is much less prominent in the project life.
Developers can really implement security functions like any other functions (and they usually adopt themselves some
of the programming rules we will see later on, even if they are not imposed on them). Of course, bad development will
lead to bad software, whatever the field.

Security validation or security-specific configuration91 (for example, of the environment) is a work-intensive phase
appearing at the near end of the project validation, mostly seen as the end of the project from the software developer
point of view. Before putting the system in exploitation, security-oriented concerns are usually submitted to heavy scru -
tiny, both from the point of view of security officers, who frequently (and legitimately) see new code as a new source of
numerous software vulnerabilities and careless users, and from the point of view of project managers who frequently
(and questionably92) see security officers as surrealistic technocrats or paranoid naysayers. Such close examination may
or may not help improve the security of the software, but up to the author knowledge, very rarely prevents it from
entering production93, though security requirements may see a fast update beforehand94.

Things are not always as dark as these lines suggest95. Monitoring and management functions may improve due to care-
ful specification of security features. Henceforth, exploitation may proceed peacefully and give a lot of input to the
operational security teams that closely monitor the security improvement of the system96. In fact, contrary to what most
project managers consider with respect to software development, a significant part of the security work related to the
system takes place during its operational life. The fact that development too could extend past initial production steps is
out of the scope of this document. But with respect to security, most of the actual work may occur during operation:
users and access rights configuration, intrusion alerts management when available, data classification and confidential-
ity management, availability are all aspects which will necessitate additional work during the exploitation of the system.
This work is not negligible with respect to the security investment done on the entire project. It is mostly this part that
makes us warn about the need to study security requirements very early at the design phase, because early investments
will pay off hugely in savings with respect to exploitation and management of security during production. This is surely
not specific to security, but it really has a tremendous impact in this field. Good security mechanisms design may nearly
eliminate all exploitation maintenance, while poor security design of an otherwise widely successful software may gen -
erates huge hidden costs to its users for security maintenance (see 4.1.1).

A last point illustrates the wide difference of point of view that emerges sometimes between security and application
oriented developers. The last steps of a project lifecycle are of importance to security functions, and disposal is cer-
tainly a step in the security procedures, if only to achieve decent destruction of data. On the other hand, abandoning
systems is still a frequent way of halting a project for most IT managers. Needless to say that abandoned systems data is
of most interest to attackers, especially those targetting confidential information. Gathering interest over data removal
or system destruction inside an IT department is frequently very difficult. It is surprisingly difficult to gather adequate
service for timely data destruction, mostly because it is difficult to motivate people enough about the subject. It is con -
versely surprisingly easy to define a satisfying data destruction procedure. We used to go into more detail about that,
but we found a very entertaining reference on the subject to which we refer the reader. Let’s just say that you can trust
good old physical procedures [Haigney2017] though you can always try something more complex if you feel inclined
([Gutmann96] is a nice initial reference to start from).

91 Frequently seen designated as security hardening.
92 Obviously, the author is totally objective on the matter, as any reader checking his bio could attest. (Do not forget to invite me

and recommend me on the professional social network of the day.)
93 Only rarer is the case where a vulnerability (or even a system failure) will lead someone to halt a system preventively.
94 We really mean that end users and project managers alike usually really consider removing all the failed security tests from their

own requirements document in order to shortcut security validation and start operation at their own risk. We could humbly
consider this a failure in security requirements elicitation process, but that would not fit 1.1.1.1 b any more.

95 Sometimes it’s worse. I swear!
96 Stop dreaming!

33

Embedded systems and computer security

4.1.1 Note on security updates
As an illustration of the consequences of not trying to integrate security requirements early in the design of software, let
us have a look at what happens when some successful piece of software is given late attention with respect to security.
In such cases, we may need to invent some original way of managing software vulnerabilities (instead of resorting to
boring classical textbook).

For example, we may propose to wait until the vulnerabilities are identified in the wild or even until they are actively
exploited by an attacker. The target will helpfully provide the manufacturer some information (and possibly some
motivation) to help find the vulnerability. Armed with the information gathered by the first victims sacrifices, the manu -
facturer would quickly provide a patch that corrects the problem – if possible without introducing a new one (because
providing fast fixes of, e.g. complex core operating system kernel functions, is always a little tricky). Then we would
provide a worldwide technique for distributing efficiently over highly privileged channels these binary fixes to all com-
puters (with intermediate server proxies we could easily cover the whole planet97). Of course, the manufacturer software
managers and most security-oriented managers would still whine loudly because system administrators do not install
patches fast enough – though smiling secretly in private as these undoubtedly customer-induced delays would probably
discharge the aforementioned managers of most legal responsibility over the vulnerabilities.

Astonishingly to us, this funny technique for managing software security vulnerabilities is very popular. It is called
software updates, all serious editors do that and provide heavy software for supporting it, while most companies inves-
ted and created jobs to manage the receiving side of the infrastructure, and users apparently really feel more secure after
their work has been interrupted by security updates – even if those have the bad habit to install forever in a loop from
time to time (but it improved).

Well, possibly some day someone will remember the days where people expected software to be secure initially and all
the time, without updates. We used to call that secure software. The drawbacks of the approaches relying solely on
(known and exploited) vulnerabilities patching had long been identified and even anticipated by those trying to work on
developing such software.

In the meantime, we will keep on reporting on the funny situations induced by application of this systematic updates
approach to securing system in fields where it is entirely inadequate, such as those of many embedded systems. A
blatant example of the shortcoming of this approach have been given e.g. by the first drones firmware security update
proposed for a model of a publicly available flying drone. This precise patch integrated a no-fly zone in the drone firm -
ware. It was provided by the manufacturer at the request of an angry citizen who found one of those drones lying on the
lawn. The motivation of the manufacturer celerity to producing the patch can be better understood by analysing the loc-
ation of the no-fly zone : a 15.5 miles radius circular area around some house located in the middle of Washington D.C.
(the big white building). As French citizens, we grumble a lot on the reasons why our own smaller but older property
located in the middle of Paris was not given appropriate consideration. We could even consider that many other critical

97 And even create jobs for all the customer-paid system administrators of these additional servers.

34

Figure 5: Innovative, open source, general purpose, good old and ground breaking digital data destruction device

Embedded systems and computer security

industrial or military buildings could be worth considering98. But you know how French people are… always arguing
about something ; when they are given for free real blatant examples of why security updates cannot work.99

4.1.2 Risk analysis
Risk analysis results are a very interesting input to software developers, system architects and project managers that
care about security.

To nuance immediately however, the frequent trend of people doing risk analysis to extend their study on all links to
security issues and embrace all the spectrum of everything is somehow of disturbance. Risk analysers can be a little
annoying also to implement focused technical mechanisms and pretty annoying to get the adequate career recognition
for developing good security software. The last point may be due to the fact that funding and money is the key interest
of risk analysis, a fact that does not necessarily attract people with the right skills for letting you invest in your own
ideas at the detriment of theirs.

However, a risk management step is always a good idea in the first works associated to addressing security. A risk ana-
lysis (contrarily to what most consultants sell) is frequently very configurable in scope and length, down and including
one minute thoughts about the things you care most100. Therefore, let us address briefly but efficiently how to approach
the analysis, its benefits and its shortcomings.

A risk analysis (whatever method) usually involves the five following steps:

1. In the first step, we focus on assets identification and evaluation of their value. This evaluation is usually
simply made in terms of money value. We are not necessarily material security officers, but money is a con-
venient way of rapidly (albeit unreliably) comparing things and nearly everything can be roughly evaluated in
monetary terms even if it involves morally questionable shortcuts101. This material evaluation is indeed very
useful for comparing concerns of differing magnitude and identifying objectively critical concerns over per -
sonal individual judgement. The objective is not to put a cost on everything, quite the contrary, but to give an
honest list of valuable items. This list may be pretty difficult to build, especially in the context of information
systems where value does not necessarily relate to topologically delimited things, but may also be information
or some computation results. Furthermore, this (high) value is not at all necessarily an economic value, it may
have many qualitative dimensions (e.g. family pictures, artwork, intellectual creation). So, the endeavour of
this step is really to build a list of assets and give estimates of their value in easily understandable ways.

2. The second step is to sort this list according to the security priority given to them. This step shows that value is
clearly not the only criteria (or the second step would simply be done automatically). Here, we will define the
things we really want to protect and the choices made : reputation versus money, business versus customers,
cargo versus boat, passengers versus vehicle or whatever strange dilemma hazards and imagination may throw
at you. Fortunately for the security officers who do not feel at ease with tragical roles, many of those decisions
are pretty reasonable and do not necessitate engaging one’s soul. At least in the first years.

3. Once the most important assets are identified, actual analysis of the system operation can allow to identify
some vulnerabilities, some threats and derive potential damages made to the system by these threats.

4. More information can be entered in the analysis process by considering threats priority. Most of the time, this
step is, for the author, the one most questionable in risk analysis methods. By definition in security, threats are
intelligent attackers and intelligent attackers do not explain their attack plan beforehand, quite the contrary.
Therefore, threat determination is an oracle problem.

5. Finally, all these analysis steps allow for the optimization of counter-measures selection in order to protect the
most valuable assets from the most dangerous threats and vulnerabilities and start a virtuous improvement
circle.

These steps, both in theory or practice, should help the reader understand that risk analysis is inherently a qualitative
approach, in the sense that it is based on human/expert opinion. This is not necessarily a drawback of the approach102.

These methods are easily applicable to many contexts: organizations, systems, products. Similarly, the length and detail
of analysis can be tuned. This is not necessarily an advantage (because you may never know when to stop your ana-
lysis).

98 Not to speak about my own home privacy !
99 See, e.g.: https://www.wired.com/2015/02/white-house-drone/
100 In your software. Extending the analysis to ordering everything a man should care about in his lifetime risks getting too long. (I

would not dare order a thing about the other genre.)
101 Such as adequate compensation for loss of human life, work cost for rebuilding data, legal costs for impunity attempts, etc.
102 For example, you can easily spot bad risk analysis consultants when they claim that they rely on beyond dispute scientific

approaches, without even having to know their (possibly confidential) secret techniques.

35

https://www.wired.com/2015/02/white-house-drone/

Embedded systems and computer security

Several methodologies have been proposed to bring some rigour to conducting a risk analysis. Some of these
approaches offer tremendous help for practical application and are currently or have been well recognized among
security professionals. In these methods we find names like :

• MARION, MEHARI, EBIOS, etc.

• HAZOP, FMEA, ISO31000, etc.

The ISO 27000 standards family is the latest and most popular incarnation of this work. Of course, out of popularity,
specific selection of a precise standard is frequently the source of endless debates. For example, the above list has been
cleverly ordered from a totally factual point of view: French methods versus the rest of the world. Clearly a decisive
factor sometimes.

Outside of nationality, risk analysis techniques offer several advantages from the point of view of the author :

• First of all, they allow identification of the assets to protect in the security target, as well as a possible estima-
tion of their values. (Realistically, the asset values are not so frequently given.)

• When given, these monetary values offer a rare opportunity to budget realistically for protection 103, if only
simply by investing a fraction of this value.

• Risk analysis reports can be given in plain language and are quite easier to understand than assembly language
exploits or cryptographic hash functions. Hence your target audience starts to understand computer security
issues and is frequently willing to help – at least until budget capture specialists clear the field for you. End
users understanding also frequently help better allocation of risk management strategies.

• Risk analysis clearly identifies the various risk management alternatives. Frequently, engineers mostly focus
on risk reduction, but other options are available :

◦ risk transfer : via insurance, state104, etc.

◦ risk acceptance : because in some cases, there is the feeling that the only realistic alternative is to live with
a risk (usually minor, possibly temporary), but these decisions are better taken collectively at the appropri-
ate management level.

◦ risk reduction : through work, additional work and then more work, etc.

◦ risk avoidance : frequently neglected, risk avoidance may be interesting at the technical level, especially
for information systems – just choosing another algorithm, another implementation technique, etc. may
allow to avoid a given risk altogether – but frequently unpopular105.

• Both the readability and the value integration of a risk analysis presentation offer the opportunity to clarify
management priorities with respect to security to orient the overall security policy of the organization.

In front of these advantages, risk analysis exhibits also several drawbacks, which its proponents frequently forget to
outline :

• The first and big problem is due to the fact that most analysis methodologies involve analysis of the threats
and attackers faced by the security target. While general ideas may be given, a good inventory of potential
threats and attackers starts to look like an oracle problem : if only we knew them all, why not simply eliminate
them ?

• The other pretty common problem with risk analysis is that this is usually the technique which is frequently
used to demonstrate that all risks are already managed. A qualitative technique is also of course manipulable, if
only by selecting the right experts. Executives remember this and rarely want to show an unfavourable picture
of their own risk management, be it justified or not.

• In practice, recent risk management methodologies have started more and more to rely exclusively on best
practices and “standard” risks lists (see 1.1.1.1 c auditors certificates too). But these lists, whatever their qual-
ity at the moment of production, do not help to target real assets in actual organizations and especially to con -
vince users to confess their probable value. In the worst case, these lists fuels paranoia by frightening
executives or employees with extremely unlikely scenarios or similarly orient them over ready-made useless
tools.

• Experience frequently confirms that actual research of management priorities does not end well. Management
rarely wants to decide. Most of the time, many managers have reached their position by avoiding conflict and
promoting consensus and compromise. Arbitration of theoretical tragic choices between two equally important
divisions of their own company with respect to fictional computer attacks does not really fit the picture ;

103 Note to executives : also an easy way to spot those who do not like much those realistic budgets.
104 One does not usually manage the risk of military invasion oneself.
105 Just try the obvious suggestions : use another operating system, use another middleware, use another networking technology,

use another CPU, use another programming language, use the compiler (yourself). See if people really want to avoid risks...

36

Embedded systems and computer security

neither officially publicizing the security policy rules that put customers data protection at a (much) lower pri-
ority than business objectives and bonuses attribution. So decisions may not exactly take the expected form106.

• Finally good risk analysis does not always end well morally speaking. For example, product lifetime optimiza-
tion is a typical application of well done and well tuned risk management, for the benefit of the manufacturer
to the detriment of the customer. Risk analysis being inherently viewpoint-based, its optimization may not be
in favour of the needy (in the Robin Hood sense).

So overall, even if risk analysis is a nearly mandatory first step of many computer security engineering processes, it
should not be considered alone.

4.2 Static verification and (secure) software development tools
The need for secure development has fueled research and development of secure development tools.

4.2.1 Source code analysis tools
For careful developers, understanding some of the secure programming techniques and origins of security bugs mostly
immediately renew the envy for automation that frequently fuel their interest for machines. Indeed, in many cases,
improvement of software security looks like a perfect playground for automated help of software developers :

• security bugs are especially dangerous (due to the failure impact deliberately added by the attackers) ;

• they are commonly associated to intentional programming faults which impact the programmer did not pre-
dict ;

• they usually involve intricate and complex pieces of software.

Source code analysis tools are obviously very helpful to try to address them. On the other hand, secure software pro -
gramming rules have a strong trend to lead to boring development rules so many programmers do not really like them ;
automating for enforcing them can be a nice option to have them comply more happily. Whether programmer satisfac-
tion is really worth any effort compared to other approaches – for example immediate replacement by new software
development methodologies – given the observation of figure 1 is left as a political debate to the reader.

In any case, among all the source code analysis machinery developed through computer science, we can try to qualify
the variables capabilities of security analysers according to several features sets (which, by the way, may not all neces-
sitate access to the source code but may sometimes be performed over the compiled software) :

• First, the simple direct study of calls to potentially insecure library functions (or less frequently 107, the invoca-
tion of unsecure programs).

• Bounds checking analysers and those detecting simple (scalar) type confusion are those which will allow to
address the most common sources of vulnerabilities in classical low level (and efficient) programming lan-
guages (C and the like), typically buffer overflows.

• More advanced analysers will address complex type confusions as well as pointer arithmetic and more gener-
ally pointers-related software bugs that may lead to memory corruption issues or exploitable vulnerabilities.
The analysis involves more complex calculation for static analysis of program behaviour or sometimes
dynamic checking.

• Memory management errors are not only prone to security exploitation but also a common target for dedicated
debugging tools which frequently favour dynamic analysis or program instrumentation for detecting these
problems at test time. These are pretty useful and are a good example of the fact that software analysers useful
for security are not necessarily security-specific tools.

• More advanced program analysis techniques available in complex modern analysers or compilers may allow
for detection of vulnerabilities that involve sequences of operations, via control flow analysis of the program
(especially with respect to known problematic sequences).

• Dedicated analysis techniques, like data flow analysis or pointer aliasing analysis are frequently helpful in
order to improve control flow analysis results (especially in order to reduce false alarms). But more generally,
static software analysers, and compilers (which frequently incorporate a specific analysis technique once it has
shown its usefulness), offers strong opportunities to improve the detection of potential software vulnerabilities.

Outside of vulnerabilities removal, software development tools may also help in implementing mitigation techniques
that will help further protect the system software. They also frequently appear in compilers with a link with analysis
tools. But the latter are more related to vulnerability prevention (or removal in the development phase), so we make a
distinction. And the actual mechanisms involved are also frequently pretty different and we will look at them later, in
association with coding techniques.

106 Like in : “You have to protect both ; with the same budget. (Yes, the restrictions decided last week included.)”
107 Because the persistence of unsecure programs usage on secure systems is far from easy to envisage wisely except from a very

stupid point of view.

37

Embedded systems and computer security

Several classes of tools evaluation can be envisaged, especially from a commercialization point of view:

• source code analysis tools

◦ simple searching tool (grep-like)

◦ lexical analysis

◦ abstract syntax tree (AST) construction and analysis (parsing)

◦ advanced works

▪ global / local analysis

▪ type calculus, logical reasoning, range calculus

▪ false alarms reduction techniques

▪ IDE integration, specification-based verifications (or testing [MFCLWS2009])

▪ etc.

• penetration testing tools

◦ port scanners : nmap, etc.

◦ vulnerability scanners : nessus, etc.

◦ application scanners, or web application assessment software.

Some lists (for source code analysers, other tools may operate on binary or bytecode):

• OWASP’s: https://www.owasp.org/index.php/Source_Code_Analysis_Tools

• NIST’s: https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

• OWASP’s (for dynamic analysis or vulnerability testing): https://www.owasp.org/index.php/Category:Vulner-
ability_Scanning_Tools

4.2.2 Code integrity
Successful usage of checking tools may improve a lot the baseline security of software. Additional measures can also of
course be applied, but among tooling preventing the occurrence of security vulnerability introduction in software, code
integrity checks are also pretty important. The above tools address intentional but non-malicious development faults
(most commonly bugs) but with respect to security we must also take into account malicious faults, that could be intro -
duced deliberately inside the source code (after analysers examination of course).

In order to protect the software against such malicious alteration108, code integrity protection procedures and tools
should be used. The usage of cryptographic signatures of source code coupled with integration with a source code ver-
sion management software is among the available approaches. At the moment, classical solutions in the open source
domain rely on PGP and using it with the git version management software and its most common instantiation on the
GitHub service. This allows you to sign your commit tags using a cryptographic asymmetric secret keys and verify
source code pulled from the service. Additional signing may be needed in order not only to certify the contents of the
commit, but also its intent and position in the versioning109 tree (on git pushes).

The guide at: https://github.com/lfit/itpol/blob/master/protecting-code-integrity.md proposes a practical example of
using these tools to improve the integrity guarantees offered during the development process.

Though this guide is specifically suited for open source software development, the features are certainly applicable to
any development, including the personal private key protection aspects for developers (here on a smart cart).

108 At least, at the source code level [Thomson84].
109 In order to avoid an attack using a previous faulty commit submission, initially correctly signed but discarded from the software

and that could be reused by an attacker to perturb a later version.

38

https://github.com/lfit/itpol/blob/master/protecting-code-integrity.md
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://www.owasp.org/index.php/Source_Code_Analysis_Tools

Embedded systems and computer security

4.3 Security Evaluation Criteria

4.3.1 Security standards as criteria
The first sets of security standards was established in the military domain by the United States Department of Defense,
soon followed by other countries in the formulation of security standards for computer systems and a unification effort
finally concluded at ISO in the 2000s :

• TCSEC – Trusted Computer System Evaluation Criteria – DoD 1985 (Orange book) and TNI – Trusted Net-
work Interpretation of the TCSEC (Red book) – and later documents grouped in the Rainbow series.

• ITSEC – Information Technology Security Evaluation Criteria (EEC110 1991)

• JCSEC (Japan), CTCPEC (Canada), etc.

• CC – Common Criteria also known as ISO15408 (ISO standard since ~2000)

Astonishingly for us young apprentices, the oldest Orange book from the pentagon still offers valuable teaching interest
due to its adherence to a qualitative separation of systems into different levels of security with a meaning from the func-
tionality point of view. 7 levels were available in the Orange book:

• Minimal protection (level D) which also meant failure to succeed demonstrating a better level on all verifica-
tion criteria111.

• Discretionary protection as in

◦ discretionary access control policy (level C1)

◦ added with logging for auditing most operating system operations (level C2112)

• Mandatory protection with

◦ object labels for simple mandatory (multilevel) access control policies (level B1)

◦ structured protection (level B2)

◦ security domains (level B3)

• and verified protection (level A) with formal verification of the security kernel.

110 Id est EU nowadays.
111 As in “Try again, boys.”
112 Hence the “C2 audit” logging functions of several operating systems nowadays.

39

Figure 6: The rainbow series documents

https://en.wikipedia.org/wiki/Rainbow_Series

Embedded systems and computer security

Each level is cumulative and includes the functionalities of the former. In addition to the classification of the system
with respect to these levels that imposed the availability of (more and more advanced) security functions, assurance cri -
teria were demanded in several dimensions to guarantee the effectiveness of these functions. In particular, specific
assurance elements were needed on the following topics for gaining the evaluation status113 :

• with respect to the available security policy in the system :

◦ on discretionary access control implementation ;

◦ on object reuse control (ie. logical data destruction) ;

◦ (security) labels operation ;

◦ on mandatory access control implementation (if available).

• in relation with imputability :

◦ on identification and authentication of users ;

◦ on the availability of a trusted path (to prevent trojan horses) ;

◦ on audit.

• with respect to assurance of security in the operational life :

◦ system security architecture rationale ;

◦ system integrity guarantees ;

◦ covert channel analysis ;

◦ installation management ;

◦ and secure recovery (in case of security failure).

• in relationship to the life cycle of the system (development primarily) :

◦ security tests ;

◦ specification and verification process ;

◦ configuration management (for development) ;

◦ secure distribution (of the software to the customer).

• and concerning the security documentation available :

◦ in the user guide ;

◦ in the installation manuel which had to provide a secure installation procedure ;

◦ in the tests documentation ;

◦ and documentation for the security management.

These various elements were the criteria upon which the evaluation of the claimed level was performed and a given
assurance of the achievement granted (or not). Security criteria hence was the overall name of the qualification process.
It stayed in the terminology of computer security.

Note that, whatever the terminology, this evaluation remains an ordinal and qualitative one. Though the expert advice is
very well bordered by exhaustive guidelines on the evaluation process and state of the basic mechanisms requirements
for various class, his or her expertise is still key to the final evaluation decision. (Later on in the nineties, people might
have spoken of certification rather than evaluation.)

After the TCSEC, the European initiative on the ITSEC brought an interesting modification. Instead of wiring the
description of the target of evaluation in the criteria documents114 and thus somehow limiting the scope of the standard,
the ITSEC asked the candidate to define this target of evaluation in terms of functionalities and assurance criteria to
provide (within borders, somehow rather similar to the TCSEC for common computer systems). With respect to the
functionalities claimed in the target of evaluation (and adequate evidence), assurance correctness criteria allowed to
classify the final security level of a (successfully) evaluated system between 6 levels, from E1 to E6.

113 An additional assurance level qualifies the quality of the evidence brought to reach the level.
114 Yes, we are oversimplifying.

40

Embedded systems and computer security

Some effectiveness assurance criteria allowed to further evaluate the security of the system (given its security function -
ality level) in the following dimension:

• security of system construction :

◦ suitability of functionality ;
◦ binding of functionalities ;
◦ strength of mechanisms ;
◦ construction vulnerability assessment ;

• security of system operation :

◦ ease of use ;

◦ operational vulnerability assessment.

4.3.2 Common criteria / ISO 15408
Finally the common criteria (CC), which later became the ISO 15408 standard, further enlarged this vision by not only
allowing the submitter to propose a given target of evaluation, but by offering the opportunity to define protection pro -
files as a kind of models of a common target of evaluation. Initially mostly presented to allow reuse between versions
of the same product, these profiles quickly became an opportunity in the industry to define protection profiles for
classes of products in order to allow for easier evaluation of product security. Though the approach may have suc-
ceeded in a sense due to the augmentation of the number of evaluated products available for security purchase (though
the augmentation of the proportion of security products evaluated among all computer products may still have to be
confirmed), it also raised the concern of an industrial consensus over some protection profiles functionality sets which
may not be very difficult to claim but which offer limited interest to users.

For example, a later widely available Linux distribution (successful) evaluation raised the following comment among
kernel developers, which illustrates very well our concern : « For the most part, the protection profiles define away
nearly all of the interesting threats that most systems face today. » in Fedora and CAPP, lwn.net, 10 dec. 2008. Earlier, a
very successful operating system managed to obtain an EAL4 evaluation and the associated favourable press for a
desktop system without any networking device (which obviously facilitated the evaluation but considerably reduced the
practical relevance of the target of evaluation).

Since 2012, the CCRA management committee agreed on a harmonization on the application of the CC moving to a
more protection-profile (PP) oriented way of using the criteria. The idea was to facilitate the development of protection
profiles based on work between government agencies, product vendors and evaluation laboratories. These protection
profiles were intended to be used for procurement purposes in several nations. The move to more standardization of the
protection profiles should have supported the goal of reasonable, comparable, reproducible and cost-effective evalu-
ation results. The common protection profiles would also somehow offer more guarantees to purchasers that a meaning-
ful security target was embedded in these protection profiles (to defeat rogue evaluations). Evaluation was to be done
against these protection profiles, if not mutual recognition of security target evaluations would be limited to a low level.

Outside of these concerns, the Common Criteria standardized several elements of terminology and their acronyms asso-
ciated to security evaluations :

• Target of Evaluation (TOE): which is the system subject of the evaluation.

• Protection Profile (PP): a document, which identifies the security requirements for a class of security devices
relevant to a group of users (and generally written with this user community).

• Security Target (ST): a document that identifies the security properties of the TOE, possibly using one or more
protection profiles.

• Security Functional Requirements (SFR): a document which specify all the individual security function
provided by the subject of evaluation. The CC presents a standard catalogue of such functions and identifies
the dependencies of such functions where they exist. It if is not using standard elements (whether functions or
full profiles), the SFRs document must describe the security functions in detail.

• Security Assurance Requirements (SAR): documents and measures taken in the development process and used
in the evaluation process to give a level of trust to the product security features. Specific requirements for par -
ticular targets or types of products are documented in the ST or PP.

• Evaluation Assurance Level (EAL) : the EAL is the numerical rating describing the result of the evaluation of
a given SAR. CC lists seven levels, ranging from EAL1 to EAL7. Higher EAL do not necessarily imply better
security. They mean that the security assurance of the TOE has been much more extensively verified. Better
security depends not only on the EAL level achieved but also on the available security functions in the TOE
and their adequacy to the security needs. Of course, in practice, many people forget to read the specification
document and focus only on the final number115.

115 So, there is a caveat in the human resources screening rules for security procurement people : you have to fire first those who
do not know what the ST document is, but you may keep those who do not know to count to seven if your security assurance

41

Embedded systems and computer security

The implication of the use of PP(s) and ST documents for the evaluation of products was an opportunity of generic
models definition and possibly cost reduction for evaluation but also opportunity for an abuse of “narrow” ST defini-
tions for marketing-oriented security ratings. Governmental bodies reacted by validating some specific PP(s), see for
example: https://www.niap-ccevs.org/Profile/PP.cfm or https://www.ssi.gouv.fr/entreprise/produits-certifies/cc/profils-
de-protection/ . These PPs provide much more detailed lists of security functions expected from trusted systems but
their variety make them relatively difficult to describe in detail in this document. We encourage the reader to browse
them but, first and foremost, to remember that precise examination of the security functions and security requirements
available and associated to a computer system is always required before trusting it – whatever the rating marks printed
on the case.

4.3.3 Note on DO-178C
In the context of this course lectures, we also need to go into more details into the standards of the aeronautics field
with respect to software engineering. That is to say the RTCA DO-178C.

Other standards numbers have been allocated to cybersecurity-specific issues, but as with many things in cybersecurity,
little is known about the actual content and things to do with these standards, outside of their numbers which are DO-
326A, DO-355 and DO-356116.

With respect to DO-178C, software is a part of the design process (ARP 4754A), DO-254 addressing the hardware
development life-cycle and DO-178C the software development life-cycle. The given safety assessment (ARP4761) of
the intended aircraft function addressed by the system determines a software (criticality) level among the 5 levels
labelled from A to E (from the most critical to the non critical one) with the associated denomination : A (catastrophic),
B (hazardous), C (major), D (minor), E (no safety effect).

Each part of software life cycle process is a section of DO-178C:

• System aspects relating to software development (section 2)

• Software life cycle (section 3)

• Software life cycle processes

◦ Software planning process (section 4)

◦ Software development processes (section 5)

▪ Software requirements process

▪ Software design process

▪ Software coding process

▪ Integration process

◦ Integral processes

▪ Software verification process (section 6)

▪ Software configuration management process (section 7)

▪ Software quality assurance process (section 8)

▪ Certification liaison process (section 9)

• Overview of certification process (section 10)

• Software life cycle data (section 11)

• Additional considerations (section 12)

Traceability is full for (high level) software developed under DO-178C, starting with system requirements down to
source code (and even object code) via high level and low level requirements.

There are several supplements to DO-178C (and its ground-based companion DO-278A117)

• DO-330 – Tool qualification

• DO-331 – Model based development

• DO-332 – Object orientated technology

• DO-333 – Formal methods

level target is not so high (note the latter criteria could also ensure prices remain affordable, though your mileage may vary).
116 And, to be fully complete and honest, about a few things they do not address: aircraft or ground physical security, airport,

airline or air traffic and communication or navigation. Whether it is useful for an airworthiness standard not to address these
issues is left to the reader for appreciation. Please refer directly to the standard description for the actual document scope
summary (the author still has not managed to figure how to understand it).

117 DO-278A is GUIDELINES FOR COMMUNICATION, NAVIGATION, SURVEILLANCE, AND AIR TRAFFIC MANAGEMENT
(CNS/ATM) SYSTEMS SOFTWARE INTEGRITY ASSURANCE, obviously accompanying the former.

42

https://www.ssi.gouv.fr/entreprise/produits-certifies/cc/profils-de-protection/
https://www.ssi.gouv.fr/entreprise/produits-certifies/cc/profils-de-protection/
https://www.niap-ccevs.org/Profile/PP.cfm

Embedded systems and computer security

• DO-248C – Supporting information for DO-178C and DO-278A

4.3.4 Alternatives
• SQUALE (AC097 of FP4-ACTS): http://cordis.europa.eu/project/rcn/30538_en.html

4.4 Coding
This section is the most important of the text118, hence hidden somewhere in the middle (when the document will be
completed). Here we are going to talk about programming real software and trying to avoid the most common security
mistakes. Regular practice and wise control of this aspect of programming will give you a decisive and definitive
advantage over most other programmers. Your software will have the same kind of superiority over all other unsecure
software. The author suspects that running such software will give the feeling of operating a 20 th century tank in the
middle of a middle-age battle: why bother with plate or mail armour, crossbows, bows and arrows if you can easily
drive something like a M4 Sherman? Upgrading to the cyberspace equivalent of the latest AMX Leclerc or M1 Abrams
is left as an exercise to the (hopefully well funded) reader119. Needless to say, all these investments will also extend your
(virtual) life accordingly120.

4.4.1 Frequent or knowledgeable attack classes
Most of the time currently, acquiring a security job (which novice students are always prioritizing) involves primarily
knowing attacks, even ultimately finding a new one121. Indeed, some inspiration is to be found initially in the examina-
tion of the most frequent sources of development faults that elementary attacks exploit. They show that software
developers typically ignore some of the ways their software can operate, which obviously pave the way to abuse. They
also show that such abuse (naturally) implies using the software or the computer in non conventional ways, more or less
complex, most frequently pretty low level (hence attractive to hardware and microprocessor designers and generally
very boring to graph colouring algorithms designers), but certainly not as complex as ICBM design122.

4.4.1.1 Understanding buffer overflows
On many C implementations it is possible to corrupt the execution stack by writing past the end of an array declared
auto in a routine. Code that does this is said to smash the stack, and can cause return from the routine to jump to a ran -
dom address. This can produce some of the most insidious data-dependent bugs known to mankind in [Levy96] is the
main and first publicly available description of this classical source of security issues. Buffer overflows, or more pre-
cisely stack-based buffer overflows, intentionally provoke such fault-inducing conditions to redirect the CPU execution
to an instructions sequence unintended by the original software developer or the legitimate computer user.

Understanding a little more precisely what happens during such a buffer
overflow involves describing what happens when a function is called (in C)
from the main program body on a common stack-based CPU. Arguments
passed to the function are generally stored on the stack first. Then general
registers (e.g. status bits or the current stack pointer) are saved on the stack
and the CPU return address is saved on the stack for (later) function return.
Control is then transferred to the called function program code. Many details
are dependent on the precise type of hardware architecture used but the over-
all idea is the same.

Afterwards, we should look also into more details into the way the called
function operates. Again in C, most local variables of a function are also
stored on the stack, including local fixed size arrays, e.g. small temporary
buffers. Now, if the called function can be induced into manipulating in this
temporary area some input data bigger than the expected size of this buffer,
of course the stack components will get corrupted. However, the idea of the

118 And this is the motivation harangue of the part. Time to get bloody.
119 Appropriate verifications of solvency resolved, the author is of course available for (expensive) consulting or even (exorbitant)

management positions on the topic. Results guaranteed (for the moment). Seriously.
120 We do not say anything about hair loss or fertility because we would not like to sound over optimistic, but still some promising

internal results have leaked.
121 Just to get rid of the issue as fast as possible: in order to find a “new” attack and forever impress recruiters, just look at some

existing old attack class and find a recent spot where developers made the same kind of mistake once again. You can also note
how the author rewards students who patiently read hundreds of footnotes. But do not do the same to find a vulnerability, use
all possible shortcuts like an attacker, lazy learner or successful career builder would. And remember you can only shine in
middle-age cyber-battles with such a basic weapon.

122 Private joke directed at cybersecurity analysts blindly using keywords to grep wiretapped Internet traffic. (NB: Shame on you
by the way: quit and go get a real job !)

43

Comment CPU stack

SP, FP ► sfp

body
stack
frame

ret_val

arg3

arg2

arg1
prev SP► y

x

http://cordis.europa.eu/project/rcn/30538_en.html

Embedded systems and computer security

manipulation is to cleverly corrupt the original return address saved on the
stack so that the end of the function does not send the CPU execution into a
random area of memory but to a carefully chosen address under control of
the malicious user. (In the initial variants of these tricks, this zone was even
on the stack itself inside the just overflown buffer, further illustrating the idea
of clever software integration, unfortunately from malicious programmers.
Needless to say, most modern CPUs are expected not to execute code known
to be located inside their stack area.123)

Such a disruption of the normal execution path of the program can be more
or less useful for malicious users depending on the precise case but illustrates
the way low level details of the computer operation (including knowledge
about both the CPU and the C compiler) can be abused to mount an illegitim-
ate execution.

Note that, conversely, ways of systematically disrupting these attack venues
are also numerous provided the computer designers accept to integrate poten-
tially simple security concerns in either the CPU or compiler design. Appar-
ently it also takes some incredibly difficult change in their inner mind
because it took several decades to generalize the concepts, at least at the soft-
ware levels, while the hardware issues are apparently just starting to get
settled124.

However, in the absence of the generic protections (and even in their pres-
ence) the most common software programming guidelines given to prevent the occurrence of buffer overflows in C
code are:

• to be careful when writing into buffers, and most precisely to always check the length of the input and output
memory areas when copying ;

• to never do any tricks in C that are not totally mastered ;

• to forbid the usage of functions that do not fully check the length of their arguments, even in the standard lib-
rary (most precisely strcpy and strcat are to be avoided) ;

• to never do any trick in C (we already said it?).

4.4.1.2 Format strings
Many standard C display functions use a format for printing: printf(), sprintf(), fprintf(), etc. Most of the time two variants
of such functions exist: one with and one without such format string.

When user input is passed to such functions, it can generate output describing the programs internal. For example,
passing “%x” to a straight printf() will guide it to print its next argument from the stack. This kind of situation may allow
to access areas of memory for reading. In case such areas of memory hold an interesting secret, such a format string
will allow anyone yet not knowing it to see it.

It is important to never pass a string with user-supplied data as a format without using ‘%s’. An attacker can put format
specifiers in the string to mangle the stack, leading to a possible security hole. See https://man.openbsd.org/printf.3 for
example. Getting information on the internals of a running operation can also be a precursor to another attack necessit -
ating runtime knowledge, such as the precise position of the program in memory.

Note system logging functions usage may also be affected by variants of this issue.

4.4.1.3 Arithmetic overflow
Arithmetic overflow occurs in finite precision computer arithmetic when the result of a calculation, most frequently a
multiplication, is bigger than the maximum value storable in the (finite precision memory) variables involved. Such a
case is well known among programmers dealing with control and command software (because in these cases, the com -
manded devices usually does some variant of the universally known bad thing) but most programmers do not fre -
quently see these corner cases as problematic for most software. They are wrong, because most of the time such
overflows are exploitable by attackers in order to trigger abnormal software execution conditions and further exploit
them.

The most common situation is dynamic (heap) memory allocation using a variant of the common idiom:
data = (struct item *) malloc(n * sizeof(struct item));

123 Provided the operating system does not do something stupid to allow it again. Oh well...
124 Admittedly, stack execution prevention or write-execute memory access rights separation were integrated into CPU

architectures in early 2000s ; but several of the most disruptive attacks techniques that make the headlines in these late 2010s
are still based on advanced hardware features (memory organization, cache memory, speculative execution, etc.) that
downplayed “a little bit” the security issues.

44

Comment CPU stack

SP ►
array[...]

function
stack
framevar2

var1
FP ► sfp

body
stack
frame

ret_val

arg3

arg2

arg1
prev SP► y

x

https://man.openbsd.org/printf.3

Embedded systems and computer security

if (data == NULL) {
return ENOMEM;

}
where n is an integer value computed from user input. In this program, if n is big enough overflow may occur in the
call to malloc() and a small memory allocation may be done because n * sizeof(struct item) will be a small value. This
erroneous buffer allocation could open the path to a memory overflow.

The right idiom to use in this case should systematically rely on the convenient and extremely less known calloc():
data = (struct item *) calloc(n, sizeof(struct item));

In this case, the allocated space is also initialized to zero, an operation the author considers beneficial too. Performance
addicts can further consider reallocarray() to avoid this overhead125.

4.4.1.4 SQL Injection
SQL injection is another classical software vulnerability that especially appeared in the headline at the beginning of the
2000s with the rise of the number of Internet facing company and merchant websites. Most of these sites were relying
on some kind of database in the background and using them via dynamically built queries. Frequently, these queries
were vulnerable to carefully crafted input submitted in order to trigger unwanted execution of SQL commands.

Imagine for example the site program code builds one query statement using a variant of the following command :
statement = "SELECT * FROM users WHERE name = '"+ userName+"'AND pwd = '"

+ userPassword + "' ;"
What happens if the given user name is a carefully crafted string like johndoe' OR 1=1; --' ? In this case, the
final part of the statement query involving the check of the user password will be commented out and replaced by an
always valid condition. Of course, the actual password given to the site login procedure will not be a problem any
more. Maybe even a fake user name will be accepted (which could raise a few additional difficulties for later recovery).

Then, simply elaborating on the idea, after giving input like ' OR 1=1; DROP TALBES; --' to the site, the entire
application data may be discarded126.

Mitigation techniques involve using database access APIs more completely rather than just trying to submit crafted
strings to the RDBMS engine. Most specifically, prepared statements should be favoured to access databases via pre -
pared queries. Such mechanisms, available in all RDBMS access libraries, separate the setup and parsing of the query
itself, using placeholders for parametrization, and the execution where these placeholders are associated to actual input
parameters. This is both beneficial to performance (query setup time, including all possible query path optimizations, is
amortized over all calls) and to security in the sense that playing tricks based on the interactions between the query
string (statically built into the program) and the parameters strings (usually supplied at runtime by the user) is not nor-
mally possible. In such a case, the above query statement would look like this in the program code :

query1 = prepare("SELECT * FROM users WHERE name = ? AND pwd = ?;")

while actual execution would look like this later on :
query1→run(userName, userPassword);

Alternate mitigation approaches may involve relying on fully external libraries for mapping memory data types to per -
sistent storage transparently. This has usually other motivations than simply security and is linked to the chosen soft -
ware architecture.

In the example given, the software architect may also want to eliminate the problem altogether by delegating authentic -
ation to an external library (which will itself use a RDBMS or an LDAP directory or whatever component it wants)
while possibly preserving RDMBS access for non security-critical aspects127.

Many other common guides recommend parsing or escaping input parameters but we do not favour this approach at all,
unless you are yourself implementing such a RDBMS interface library (in which case, we heavily recommend full
blown parsing of parameters, not mere abnormal comment or special characters removal attempts which are often
incomplete).

A last approach usable fully independently of seditious development teams is to resort to intrusion detection mechan-
isms for monitoring the input flow to the application (usually available on the network in these modern always-connec -
ted days). However, we equally disfavour such an approach which is often incomplete, especially due to the next point.

125 Attentive readers have certainly noticed performance addicts have also silently and simultaneously been switched to a different
operating system where the function is available (https://man.openbsd.org/reallocarray.3). This switch was done for obvious
safety and security reasons (to protect themselves and others from potential kinetic harm). Performance addicts certainly don’t
have the time to read the present comments so they should not notice.

126 I know I resort to stupid obfuscation. This is unfortunately pretty revealing.
127 This could be a good example of risk avoidance. At least, no ghost user can place orders to try to steal some goods with

falsified orders. Resistance of the website to denial of service attacks has not improved but that’s a start.

45

https://man.openbsd.org/reallocarray.3

Embedded systems and computer security

4.4.1.5 Code or input obfuscation
SQL injection attacks are also pretty interesting from the teaching point of view because they offer several easy obfus -
cation opportunities for attackers to avoid detection from intrusion detection systems by cleverly using all the opportun -
ities offered by the SQL language.

• Simple obfuscation techniques, like mixing comments and keywords as in SEL/**/ECT, are available in this
language and already shows that intrusion detection engines monitoring the network could have some hard
time analysing all this.

• But attackers imagination of course went further with ideas like:

◦ abuse of white space or comments ;

◦ fragmentation of the injected query at the network level ;

◦ interaction with apparently independent HTTP parameters ;

◦ additional abuse of comments (such as RDBMS implementation-specific handling of special or ill-formed
comments) ;

◦ use of unprobed areas in packets for attack-specific items storage (depending on specific implementations
of detection systems).

• Possible lessons of such detection avoidance techniques seen in the field are that:

◦ A full blown parser for parameter validation may not be overkill nor so complex to build128.

◦ Intrusion detection is not so easy in fact when they want to avoid detection.

◦ Some people do know how to use all the intrusion detection tools efficiently: the attackers (in order to test
their own malware discretion or to take advantage of detection weaknesses too).

4.4.1.6 Race conditions
Race conditions sometimes allow to exploit program execution to induce forbidden behaviour. Here is for example a
classical and insecure way of creating a temporary file (in /tmp) while trying not to overwrite it :

/* Generate random file name */
name = mktemp("/tmp/tmp.XXXXXXXXXX"); – XXX is replaced by process-specific things at runtime
/* verify file does not exist */
if (stat(name,&statbuf) == 0) {

return EEXISTS;
}
/* ok, open it */
fd = open(name, O_RDWR);

This code opens a possible race condition with another concurrent process using the randomly (but frequently predict-
able) generated file name. Simply imagine that another process creates a link named against the predicted
/tmp/tmp.XXXXXXXXXX pattern but pointing to a critical system file between the stat() check and the actual open() call?
Remember that processes execute concurrently on systems. The former program will therefore open the critical system
file instead of what he thinks to be a private temporary storage. Obviously, later on, your mileage may vary.

Frequently, system developers or administrators downplay the feasibility of such abuse. (Very generally, most system
designers downplay actual exploitability of their work. They simply demonstrate their lack of maturity with respect to
security. Simple source code modifications that get rid of the issue altogether usually take much less time and effort
than endless debates or demonstration software implementation129.) They are simply plain wrong.

mktemp() was deprecated in the POSIX.1 standard associated to operating system interfaces in 2011 due to the diffi -
culty using it correctly130. mkstemp() is to be used to replace both system calls in an atomic operation as in:

fd = mkstemp("/tmp/tmp.XXXXXXXXXX"); – Simultaneously check name availability and create a temporary file

The older approach is to use the following open() flags to trigger an error if the file already exists :
fd = open(name, O_CREAT | O_EXCL);

This is also the opportunity for us here to point at the need for software developers to take the time to have a look at the
differences between the fopen(3) library function and the open(2) system call, or between the FILE* streams and the
(non negative) integer file descriptors. Not only for showing off at developers meetings but also for actual coding. By
the way, did I tell you not to do any tricks in C or any other low level programming language131?

128 With adequate tooling of course. Time for totally free advertising: www.antlr.org.
129 The only positive aspect is seeing old men or women disputing like young children. Unfortunately without the adaptability.
130 Possibly also as a tribute to the lassitude of those explaining the security issue again and again. At least it makes me feel better

to think about it this way on rainy days.
131 We didn’t even have a footnote saying not to do any tricks in C !

46

http://www.antlr.org/

Embedded systems and computer security

4.4.1.7 Awkward things
Most frequently, security problems appear in awkward contexts132. The author likes to repeat the example of a security
management checking script that was once abused using a questionable behaviour of the vi editor that the above script
was using in order to send a mail report to the administrator. The abuse involved creating a file for the script to detect
and report. But the filename of this file was using these questionable vi escapes so that the mail generation, instead of a
simple listing report, became the actual moment of malicious commands execution. While believing bringing a minor
improvement to the system security state, the security script henceforth became the instrument of one of the attacks it
was designed to prevent133.

4.4.2 Practical recommendations

4.4.2.1 Design first
Many modern programs and systems are simply broken and insecure by design. Self-proclaimed computer security
experts do little more than apply recipes and mimic their neighbours. Given the security state of the neighbourhood,
insecurity contamination prospers. Authentication is probably an iconic example of this lack of security design : storing
user names and passwords still gathers unanimous consideration while incredibly more interesting authentication mech-
anisms have been proposed in the literature for decades. When you design a computer system to obey blindly at anyone
spelling the letters of the “root password”, well it does. If you are not satisfied with the security of this mode of authen -
tication, first you have to design a different mode of operation. (If you are, then you will never be able to use the sys-
tem in a context where identity theft is a concern134.)

Authorization management similarly shows its limitations: it is still designed around Unix rwx or POSIX ACLs func-
tionalities. So when security needs are listed by users, there is also a need to design security functionalities correspond -
ing to them (admittedly, you are left with ample time to do what you want before the requirements reach you and even
more before the funds are allocated). And you may need serious imagination or bibliographical work before getting
your design right because the field has seen much less investments than one would like.

But anyway, design security first, imagine security functionalities, evaluate their applicability, test them in the field,
rinse, repeat and have users realistically pay for that.

a - Know common faults

In order to design first, of course you should have an idea of the most commonly exploited defects. Knowing how some
vulnerabilities are exploited is interesting.

It will also fuel possible intrusion detection systems intended to somehow reduce the impact of vulnerabilities possibly
remaining in operation (or which may be due to unavoidable users interactions).

You may even want to evaluate systems against these known security problems and imagine some attack simulation in
order to stress them, though this is much more of a marketing issue than you may think.

b - Do not stop there

Because, in fact, demonstrating a successful attack on a system should only lead one to stop using it, no? Neither the
lack of any successful attack is a real reason to fully trust a system, especially if they were only attempted by your
4 years old little brother135 or if, even more cleverly, nobody ever tried to attack it seriously because this is prohibited by
law136.

So it is not possible to stop system security design at the basic enumeration of known vulnerabilities and possible work-
arounds, especially using a list of security patches as a shortcut conveniently omitting software development fault
details. Neither can you simply delegate to later security testing the demonstration of security properties outside of
simplistic systems accessible to exhaustive testing (where exhaustive reachable states enumeration is feasible).

132 Note that awkward things for experienced C software developers are probably near from unbelievably mischievous for regularly
trained human beings.

133 Imagine the oracle of Delphi predicting it to the system administrator: “You will be r00ted by a file in /tmp”… Then the system
administrator creates a script to check, remove and report all the temporary files and schedules it for daily execution. Et voilà !
Trojan horses are not the only tribute we have to send to ΕΓΓΛΣ in our field. I will call this the Pythia attack.

134 Well, wait. This is nearly always a concern with networked computers. Do we really intend to unplug then?
135 I do not mean in any way that 4-years-old-proof testing is meaningless. Quite the contrary, confrontation with a well motivated

and imaginative children can be quite a challenge for a supposedly well engineered computer system. The author could easily
tell a couple more fun stories if we were not already inside a footnote. But maybe one could also expect a little more from
security professionals than a computer system which can resist children or amateur experiments, no?

136 Oh, by the way, this is the case most the time. Nowadays, even if you are (more or less) the owner of the system. Should have
said it earlier instead of simply warning against trying too much to attack systems: you are legally obliged to work on
protection ! (Why are you hiring all those pentesters ?)

47

Embedded systems and computer security

c - Architectural principles

As soon as computer systems become complex enough to raise interest (both from legitimate users and attackers) they
also start to become too complex to think about their security naively from a mere a posteriori outsider point of view.
There is a need to organize the system hardware or software architecture around several principles allowing to address
security needs with the adequate level of concern. The introduction of a network leading to a distributed system further
complicate the design effort needed to build an adequate architecture. Such architectural or functionality principles
(which you usually find again in the underlying principles of the highest level of security certification standards) incor-
porate :

• the least privilege principle, which should lead designers to give minimal rights to computer processes in order
to limit security failure impact ;

• the defence in depth idea, which justifies the existence of multiple and apparently duplicate protection mech -
anisms with the objective to prevent that a given security error propagates to a full visible failure ;

• the explicit management of the notion of delegation, which both serves the least privilege principle and the
accurate representation of security rights, possibly further complemented by multilevel security mechanisms
(security labels as well as mandatory rules) to implement security confinement ;

• the secure by default configuration setup, popularized in some popular open source system and which fre-
quently lacks in commercial systems ;

• full, extensive documentation of the system and its security operational, with as many footnotes 137 and details
as needed to train the final user or the administrator for adequate security management or for the system man -
agement in general ;

• careful design of secure protocols operation in a networked context ;

• clear specification of the security properties expected from the system, of the frontier of the trusted computing
base (TCB) and explicit (in our opinion open and public) assurance of the reached security level

◦ with the adequate level of formal verification for the highest trust level.

These principles can and should guide a design process that produces decent levels of security, even possibly a high
level of security if major means are put to the task to cover everything in detail.

Many of the current security recipes unfortunately do not fall very well in these guidelines : adding a firewall, multiply-
ing passwords138, adding awkward password selection filters, logging useless data extensively, deploying patching infra-
structures, signing complex code or data blindly, etc.

This is primarily a symptom of the lack of design effort put into proposing adequate and useful security mechanisms
that really improve the trust of end users. This is certainly emphasized by the usual lack of explicit evaluation of their
security needs by the latter ; but we stay convinced that good design work can lead to adequate and even commercially
successful trusted systems. Admittedly, the track of actual success stories in the field is still pretty short ; but it means
there is still a lot of opportunity for growth as they say in the big-business schools139.

d - Especially APIs and protocols

Building blocks for computer architectures or distributed systems architectures are the programming interfaces of soft -
ware components and the communication protocols. Incorporation of security requirements into those elements is not
easy : both share the characteristic that they cannot predict all their usage environments in advance and that they fre-
quently bring into play multiple computing processes.

For communication protocols, authentication and encryption exchanges have been proposed in several protocols (most
prominently Kerberos and TLS), but outside of these industry standards works are available to study the security of
protocols and provide good security properties. It is primarily a lack of industrial investment into this area that slows
down the incorporation of advanced protocols proposed in the literature or the academic domain. Investors should
simply update their strategies accordingly unless they simply want to wait for governments to do it (whatever the
moral140 issues underlying the debate, the author note that it has been pending for too long and all the stakeholders now
should simply make the needed contribution141 – forget about censoring the Internet by the way, this is not what is
needed).

137 Not only in the legalese!
138 Password selection rules with weird characters or spelling are often presented as a security feature : is it because once the user

has forgotten his or her password the security has improved?
139 We all knew they were followers of Emile Coué. They even think students will easily find the tuition money… But then they

try to apply suggestion to others too!
140 LOL!
141 Note the contribution of end users is probably limited to sincere clarification of their trust expectations. Furthermore probably

only a few good selfless souls have the real skills and knowledge for the task. So yes, it means all the others have left to bring
to the table is money and probably a big chunk of it. We know they are reluctant to do that, but they always are and they always
find a way to recoup their losses anyway so we are not so worried.

48

Embedded systems and computer security

Widely available security-oriented libraries of high quality are equivalently rare. Outside of a few cryptographic librar-
ies and core authentication functionality, there are not many software components for addressing complex issues like
(operational usable) security policy management, users rights distribution and revocation or application software
authorization checking. A few specific projects offer such software and the renewed investment they need is also the
reason why we insist in this section.

As a final note, we underline that hardware components too deserve a hand. Processor architectures incorporating ded-
icated, notable and useful security features are certainly still to be popularized142.

4.4.2.2 Obscurity does not help
Hiding internal information with respect to the design of the system or trying to mask its hardware setup or obfuscating
the machine code or the bytecode or even the source code, and any likewise obscurantist idea is never beneficial to
security.

Obscurity is not confidentiality. Exploits against closed source may be just as easy to realize as against open source
software, the difficulty relies mostly in the type of software fault and the software development environment, not in the
source code availability. On the contrary, obfuscation will primarily work against people writing code, especially those
trying to fix it or workaround it and not those trying to perturb the operation. Sometimes, obfuscation mechanisms dis-
guise as security mechanisms: encrypting code with a key not specifically protected and stored nearby is an example of
sophisticated obscurity that does not build upon serious design. The attacker will simply get the key first if he needs it
(which may not even be the case, classic example of CBC versus ECB cipher modes).

In the field of cryptography, many of the secret industrial ciphers hidden by some industry players have shown their
weaknesses as soon as the actual cipher design was known open. Obviously, serious attackers gaining access to this
industrial implementation documentation (simply available for a fee and a NDA143) might have acquired such know-
ledge much earlier. In any case, hiding a cryptographic algorithm is contrary to all cryptographers guidelines of
algorithm design which recommend to progress simultaneously on the cryptographic and cryptanalysis aspects. Only
major countries governmental agencies can claim to do that without being laughed at144.

a - This paragraph should not need to be written

We should not have to write these lines, but many still have reasons to promote obscurity, whether to favour their
private interests, to hide their misbehaviours or by mere laziness145. Obviously they do not know what trust is built
upon, they do not help.

We will let the reader evaluate himself or herself whether obscurity can still be beneficial to other aspects of their activ -
ity, but with respect to obscurity benefits for computer security or for cryptography, we think the final word has been
spoken. There is none.

4.4.2.3 Quality is security
Most security problems are simple bugs. In this case, fixing them is the straightforward way of dealing with the issue
and no security-specific point of view is needed. (In our point of view, even urgency is not impacted as some architec -
tural measures, like defence in depth, should be introduced in the first place in order to limit urgent cases to those where
full mission abandon is really considered).

The importance of dealing with these cases has always been regularly put forward by the founder of the Linux kernel
project, usually pretty harshly, as in:

As a security person, you need to repeat this mantra: "security problems are just bugs" and you need to _internalize_ it,
instead of scoff at it. […]

I'm deadly serious about this.

Some security people have scoffed at me when I say that security problems are primarily "just bugs". [...]

Because honestly, the kind of security person who doesn't accept that security problems are primarily just bugs, I don't
want to work with. If you don't see your job as "debugging first", I'm simply not interested. [Linus Torvalds on LKML,
2017-11-16, edited146]

We forgive the nervous reaction to the security circus even if it is undiscriminating targets (seriously, nobody gets used
to some security experts surrealistic recommendations, even their colleagues) but we nuance slightly our position with
respect to this one in the sense that we do not see all security issues as bugs. Lack of some security features or incom -
plete documentation or suboptimal behaviour may not directly fall in the “bug” category. But for all the cases where the

142 We only know of http://www.cl.cam.ac.uk/research/security/ctsrd/cheri/ and http://www.draper.com/solution/inherently-secure-
processor as exceptions.

143 Oh my god, do you mean attackers sign NDA documents in bad faith?!? I do mean a few less obvious other things too...
144 Nowadays, the author suspects that academic cryptographers may still be laughing, just in private as a precaution.
145 Without an attacker trying, idleness may very well go unnoticed after all...
146 Original at: http://lkml.iu.edu/hypermail/linux/kernel/1711.2/01701.html

49

http://lkml.iu.edu/hypermail/linux/kernel/1711.2/01701.html
http://www.draper.com/solution/inherently-secure-processor
http://www.draper.com/solution/inherently-secure-processor
http://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

Embedded systems and computer security

security problem in question is directly associated to a coding fault, they clearly fall in the bug category and we think
that they should be treated accordingly. This is the whole point of this section to state that you can factorize the quality
effort aiming at better code to say that they include security bugs and contribute to the overall security of the system by
providing better code. In this case, when bugs are fixed, security improves and, indeed, debugging and hardening are
the same activity.

Outlining the parallel between software quality improvement activity and security improvement also helps outlining the
fact that, like for software quality, there is no security “plug-in”. You do not add security to an existing piece of soft-
ware by adding a software library as much as you do not add quality to some existing software by incorporating some
compiler switches. Not even a cryptic elliptic curve cryptographic library or a magical password complexity checking
tool147. The software improvement process goes through the understanding and documentation of common program-
ming rules, the detection of bad habits and their systematic elimination, audit and screening, tooling ; and global recur-
rence of this activity over the software production iterations for regular improvement. And at some point, this
improvement reaches a plateau and that’s usually the time to look into useful new security features (unless the rest of
the team feeds enough bad new software functions in the meantime).

Like for quality, there is not specific return on investment to expect for regular software security bugs elimination.
These are not new functionalities per se (yet) so they do not bring a specific ROI (they slowly bring you the inestim-
able, end users trust). But, empirically, it seems this security improvement activity also bring some advantages to the
software development process :

• shorter test cycles ;

• less bugs, so less time spent fixing them ;

• and usually a better efficiency overall (because speed hacks frequently fall short in fact and usually lead to u

insecure software instead).

4.4.2.4 Multiple lines of protection are useful
Possibly differently of quality or safety management, homogeneous optimization of software security functionality is
not the endeavour of secure development. If attackers find a vulnerability in your line of defence – and they certainly
will find one because your software is as imperfect as any human creation can be – they will exploit it. On the contrary
of physical phenomenon (like lightning, storms, cosmic rays, etc.) hitting uniformly148 safety defences guided only by
fundamental forces of nature, attacks will typically concentrate fast on the weakest point and may occur only once your
vulnerability is known. Therefore, multiple lines of protection are really useful, if only because they could allow system
owner to take at least some action before full system compromise prevents them from trusting it entirely – before long
and costly recovery149. Investing in such juxtaposed security mechanisms targetting the same aspects of protection
obviously makes extremely uncomfortable most managers in software development teams. Most of them frequently see
as evident truth that redundant expenses mean an opportunity to save costs and not an opportunity of added protec -
tion150.

However, this is simply false. When faced with malicious opposition, the core optimization aspect is to focus on the
valuable assets or functions that you want to protect. For this perimeter, multiple lines of defence are usually perfectly
realistic and enhance the trust end users can faithfully give to the system.

On the contrary, a single line of defence, though evidently more interesting than an unprotected system will fall prey to
the current cat and mouse situation where each vulnerability in the software will lead to a full security failure which
will necessitate urgent update (in the absence of intrusion) or lead to total distrust (if an attacker exploits the vulnerabil-
ity before update).

Full specification of the security needs should denote which parts of the system may actually have the most value and
justify such architectural decisions. (Historically151, such core security kernel was only incorporating security elements
and was designated as the TCB – Trusted Computing Base – because only the core security functions were seen as the
building blocks upon which all other protections would rely.)

147 On the contrary of quality, some users apparently still believe in the magical securing properties of either : a) arcane
mathematics functions, or b) heavily pain-inflicting but simple to understand scrambling add-ons.

148 At least with a statistical distribution accessible to modelling.
149 Well, of course, this is the theory. In practice, some people do care less from intrusions than from small rain, as in : “Are the

intruders using the system to hurt our business ?” Obviously, these will soon focus their attention on the security officers
payroll too, so you had probably better run like Rincewind before they think about you in more detail.

150 Many managers blindly apply the same reasoning to redundant people, as if two guards were not evidently better than one. If
you change the environment, the same careerists would certainly conversely think that not enough redundant mates are
accompanying them on a battlefield ; though one day or another, as officers, they may probably consider them expendable
resources again.

151 Note we still think this architectural principle is perfectly reasonable today.

50

Embedded systems and computer security

4.4.2.5 Quality guidelines
In a software project, all quality guidelines will not specifically target security. Software reliability engineers promoting
them may have specific separate reasons. From the point of view of security, we put emphasis on some specific aspects
which which we want to outline here. (Though, frankly, we would really be astonished if they were not already part of
many quality engineers own programming recommendations.)

a - Simple code

Many security vulnerabilities come from complex code with unpredicted corner cases. Furthermore, complex code is
more difficult to understand and audit, so these vulnerabilities are less easily found. Finally, complex code is also pretty
difficult to maintain and modify, so it will be more difficult to correct these vulnerabilities when they are found. So, an
obvious recommendation is to ensure that simple code is favoured: small functions, limited use of macros, etc. Roughly
speaking, most code should be as boring to write as to audit.

b - Check errors

The lack of error return code checks is also a common source of software bugs that can lead to exploitable situation
especially when these code are those of system calls revealing abnormal changes in the environment that the software
developer does not specifically want to manage (such as memory shortage152).

c - Fix bug classes

Software programmers frequently make the same kind of mistakes with respect to security impacts. So when a bug is
found and corrected, this class of bug should be searched and corrected in the whole software code base, not only in the
original location. Obviously, automation should be used as much as possible to facilitate the identification of these
problems and possibly prevent reintroduction of similar issues.

Note the Coccinelle153 software tool is especially known for this kind of bug hunting. A bug hunting bugs is so humanly
smart after all...

d - Take care to semantics

Finally, a special recommendation is to take appropriate step to ensure that developers understand the semantics of the
libraries they use, especially complex ones. Contrarily to what is frequently assumed, this is certainly not always the
case when using corner sides of any operating. As an example, let us question ourselves, certainly old-time Unix users,
about the exact semantics of file descriptors inheritance over fork() especially in relation with the precise moment of
access rights checking when open()ing a file or over the allowed operations in a C signal handler 154… Are we really
sure of being able to answer these questions exactly ?
The problem is that these difficult to use APIs are precisely the places where attackers will exercise creative thinking in
order to send your software into situations where undefined behaviour is frequent and where your software is expected
to take of care itself alone, without the help of the operating system. So understanding the limitations and semantics of
these APIs is important. Of course, checking erroneous return codes and early error management is frequently a
straightforward way to avoid being faced with such subtleties in the first place.

4.4.2.6 Check user input
As is shown in most examples, attacks usually involve supplying specifically crafted input data to vulnerable programs.
These programs not only exhibit exploitable bugs, but they also accept such input while it (probably) does not really
conform to reasonable input data. Whether this is due to underspecification of the software or to expeditious imple -
mentation of input data analysis is not relevant, the truth is that after some time examining examples of security fail -
ures, one recommends to take an extremely stringent approach to user input checking. There are only benefits to such
implementation strategy (even in resource constrained situations). In many cases, even full blown parsers could be use-
ful when programs accept complex text streams as input. Contrarily to what novice programmers thing, such parsers are
not so difficult to build – unless you refuse to use adequate tooling of course (but in this case, other security rules
should be appealed to).

Another less enticing aspect is that many things should be treated as user input, not only usual run time small user input
like entering a number or a string in a form. Reading a file means parsing user input even if those files are configuration
files (supposedly) produced by (supposedly) well meaning system administrators. Relying on an environment variable
is also similar to user input checking. Accepting messages on a network connexion also means analysing user input
(possibly submitted far far away). In all these case, external data is to be analysed thoroughly before trusting it – or
more precisely trusting the variables associated to it to represent the user supplied parameters. Everything not static in
the program text should be treated like user input.

152 In the days of multi-gigabytes RAM capacity, an out of memory error code certainly means that prompt memory release and
cheap orderly program exit is the best (and easiest) thing a software can do to help the computer system as a whole.

153 http://coccinelle.lip6.fr/
154 Hint: only setting volatile atomic flags is really safe.

51

http://coccinelle.lip6.fr/

Embedded systems and computer security

Note some programming environments provide generic mechanisms to help the developer, if not to analyse the data, at
least to track user input dissemination in order to avoid relying on internal data possibly computed from external data.
This approach is commonly called a tainting mechanism. It is not only pretty convenient (especially in those cases
where external data sneaks into internal variables via many of the less known program environment parameters155) but
also easily understood thanks to human being natural trend to beware of “foreign” items and to avoid touching poten -
tially “contaminated” things.

4.4.2.7 Optimization and language
Even if, as we just mentioned with tainting, the chosen programming language obviously impacts the security develop-
ment guidelines to adopt when engineering software. However, there is no secure programming language per se. It
depends on the general programming language properties and its more or less advanced integration of security con-
cerns. We will not enter this debate but obviously, when adressing secure software engineering, such security properties
should be examined carefully.

The impact of the development environment is also very important. In this case, we note that even assumed advantages
of some development components can raise security concerns. A typical example is optimization features. Many mod-
ern compilers have the ability to remove non-executable code or do some evaluations at compile-time in order to enable
optimizations of program time execution. Such features can be detrimental to security and lead to the removal of some
security checks (which, of course, should never be triggered in normal conditions). Like for design, it is pretty nice to
see some security mechanisms being optimized out of a program. It really makes the security officer feel so useful156.

4.4.2.8 Remove code
Long term evolution of secure software should also emphasize a specific aspect frequently underestimated: disposal.

By this designation or the title of this section, we do not necessarily mean removing old code. We mean that too, but let
us start with the initial intent. Security needs necessitate, frequently, that some data gets correctly deleted and not
merely abandoned in an unused corner of the computer storage. Data deletion is, from the security point of view, pretty
different from a simple free(). When the data is stored on magnetic storage things get more complex again, especially
with modern smart storage media, until you feel obliged to fall back to those devices we already outlined earlier (e.g.
figure 5). But even earlier, removing the cryptographic key of an intermediate session for example usually necessitates
specific attention and possibly some good preparation (no mixing with random areas of memory in the first place for
example). Secure deletion is another way of looking at secure storage, possibly from the most distinctive point of view.
Similarly, secure software has to offer good destruction procedures.

At the design level, we also think that adequate consideration should be given to disposal of old, broken or poorly
designed software. We think gets() should have been removed much earlier from the C standard and that some other
functions should already be deprecated. Of course, the impact of code removal should be evaluated and adequate
advance warning should be given if there are many users of the code, but a decade waiting for security is not accept -
able.

155 Think of LD_PRELOAD or PATH environment variables for example.
156 If only he was allowed to apply similar optimizations techniques to some developers or managers career progression...

52

Embedded systems and computer security

5 Cases studies
Case studies of embedded systems security issues are thriving. The organized part of this section (the cleanly numbered
subsections) is ageing but still illustrate adequately the issues. However, this introduction is getting fancier and fancier
with time. Things the author only dreamed of as fictional examples a few years ago are now turning into real life cases,
with pictures, demos and exploits (and unfortunately many marketing wannabes and cyber managers running in). Only
proven and classic science fiction writers or directors still have to be outrun by reality.

What do I mean here? Computer systems pretty similar (at least for any computer science graduate) to those found in
classic desktop systems are being introduced inside most of the common devices surrounding us in our daily life. They
get embedded in our transportation, communication and home devices up to a point that the conventional personal com-
puter of the end of the 20th century now looks like fading away in oblivion obsoleted by these new smart devices.

Well, those who call them smart are not necessarily those less fool157. When you look at the flourishing wildlife of these
embedded systems from the point of view of an attacker (or a cyberwarrior as they call it now) what you see is just a
sea of innocent preys waiting to be slaughtered. Some of them do not even have an authentication step but they got con-
nected and will happily obey any well recorded replayed order ; sometime even randomly generated garbage does nice
things158 !

Hunting pictures will be kept for the course presentation because, of course, all the manufacturers of these innocent
herbivorous had rather them be presented as innovative devices than easy targets, but classes of such devices belong to
the following list.

• Electricity or water home meters.

• Avionics networking switches.

• Automotive networks.

• Insulin pumps (medicine delivery devices).

• Home automation things (from fridges to toasters).

• Toys.

• Drones:

◦ flying,

◦ driving,

◦ or even armed ones for the army.

None of these classes of devices at the moment offer much public verifiable information about their security level,
which we choose to interpret as the fact that they are not secure. The author would happily review any document sent to
him to demonstrate computer security requirements and functions embedded in one of these domain in order to remove
the class from the list (and most certainly to provide a new section in the previous protection-oriented one). But for
most cases, he is still waiting.

5.1 Wireless networks
IEEE 801.11a/b/g (most commonly called WiFi) was secured initially by an authentication and encryption protocol
called WEP. Astonishingly, this protocol used RC4, a cipher with a known cryptographic weakness. The reason why
RC4 was chosen in the first place is still to be given. The author suspects that it is for the same reason the Trojans
brought the horse inside their walls. This design fault evidently gave an opportunity for real attack and tools to be pro-
posed in practice as soon as the protocol was deployed in the field. WEP was soon deprecated and other authentication
protocols were deployed successively159: WPA(TKIP), WPA2(CCMP) and EAP.

However, WEP remains an option in many available WiFi devices: retracting a widely deployed unsecure communica -
tion protocol is a challenge. So attacks against WEP are still an option if you can convince an unsuspecting user or an
unskilled administrator to configure it. Finally, the author finds that the attack against WEP is interesting from a teach -
ing perspective. So let’s look in more detail at the various steps involved into trying to get the key of a WiFi association
secured by WEP.

5.2 (Not so) New generation avionics systems
TBD

157 No AI involved. Anyway, [Will1] would apply.
158 Which is absolutely not a reason at all to confuse serious security evaluation and childish blind random testing...
159 Yep. The first versions of the following protocols also had weaknesses. It seems it took some time to hire the right guys or do

the right thing or both or something else.

53

Embedded systems and computer security

5.3 Network appliances
TDB

5.4 Mobile telephony
TBD

5.5 Gaming devices
TBD

54

Embedded systems and computer security

Références bibliographiques
[Anderson2008] Ross Anderson, Security Engineering, 2008.
[avizienis2004] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, Basic Concepts and

Taxonomy of Dependable and Secure Computing, 2004.
[Biba75] K. J. Biba, Integrity Considerations for Secure Computer Systems, 1975.
[Bieber92] Pierre Bieber and Frédéric Cuppens, A Logical View of Secure Dependencies, 1992.
[Bishop2003] Matt Bishop, Computer Security: Art and Science, .
[BLP75] Bell, LaPadula, Secure Computer Systems: Unified Exposition and Multics Interpretation, 1975.
[Clark&Wilson87] D. Clark, D. Wilson, A Comparison of Commercial and Military Computer Security Policies, 1987.
[Dacier93] Marc Dacier, A Petri Net Representation of the Take-Grant Model, 1993.
[DPA99] Paul Kocher, Joshua Jaffe, Benjamin Jun, Dierential Power Analysis, 1999.
[Gar2011] Simson Garfinkel, Alan Schwartz, Gene Spafford, Practical UNIX and Internet Security, 2011.
[Goguen82] J. Goguen, J. Meseguer, Security Policies and Security Models, 1982.
[GPPTY2016] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, Yuval Yarom, ECDSA Key

Extraction from Mobile Devices via Nonintrusive Physical Side Channels, 2016.
[GST2014] Daniel Genkin, Adi Shamir, Eran Tromer, RSA key extraction via low-bandwidth acoustic

cryptanalysis, 2014.
[Gutmann96] Peter Gutmann, Secure Deletion of Data from Magnetic and Solid-State Memory, 1996.
[Haigney2017] Sophie Haigney, Author's Hard Drive is Steamrolled, 2017.
[Handbook1996] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone , Handbook of Applied

Cryptography, 1996.
[Hergé56] Hergé, L'Affaire Tournesol, 1956.
[HRU76] M. A. Harrison, W. L. Ruzzo, J. D. Ullman, Protection in Operating Systems, 1976.
[ITSEC91] CEE, Critères d'évaluation de la sécurité des systèmes informatiques, 1991.
[ITSEM93] CEE, Manuel d'évaluation de la sécurité des systèmes informatiques, 1993.
[Jones76] A. K. Jones, R. J. Lipton, L. Snyder, A Linear Time Algorithm for deciding Security, 1976.
[Kocher96] Paul Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems,

1996.
[KSWH98] John Kelsey, Bruce Schneier, David Wagner, Chris Hall, Side Channel Cryptanalysis of Product

Ciphers, .
[Lampson71] B. Lampson, Protection, 1971.
[Levy96] Aleph One, Smashing The Stack For Fun And Profit, 1996.
[McCullough87] 1987, Specifications for Multi-Level Security and a Hook-Up Property, .
[McCullough90] D. McCullough, A Hookup Theorem for Multilevel Security, 1990.
[McLean94] John McLean, Security Models, 1994.
[MFCLWS2009] Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Yi Wei, Emmanuel Stapf, Programs That

Test Themselves, 2009.
[MMEBA2008] Nancy R. Mead, Gary McGraw, Robert J. Ellison, Sean Barnum, Julia H. Allen, Software Security

Engineering: A Guide for Project Managers, 2008.
[NIST80057] Elaine Baker, Recommendation for Key Management, 2016.
[Oppliger2011] Rolf Oppliger, Contemporary Cryptography, 2011.
[Pfleeger2015] Charles P. Pfleeger, Shari L. Pfleeger and Jonathan Margulies, Security in Computing, 2015.
[Sandhu88] Ravi S. Sandhu, The Schematic Protection Model: Its Definition and Analysis for Acyclic

Attenuation Schemes, 1988.
[Schneier93] Bruce Schneier, Applied Cryptography, 1996.
[Snyder81] L. Snyder, Theft and Conspiracy in the Take-Grant Model, 1981.
[Spaff03] Eugene H. Spafford, A failure to learn from the past, 2003.
[Sutherland86] D. Sutherland, A Model of Information, 1986.
[TG77] R. J. Lipton and L. Snyder, A Linear Time Algorithm for Deciding Subject Security, 1977.
[Thomson84] Ken Thomson, Reflections on Trusting Trust, 1984.
[TPM2007] 2007, TPM Main Part 1 Design Principles, Specification, .
[Will1] William Shakespeare, As You Like It, 1623.

Index
TBD

55

	1 Introduction
	1.1 Securitease
	1.1.1 General security management rules
	1.1.1.1 Skills
	a - High level academic skills
	b - Critical behavioural qualities
	c - The hacking no-skills and certified not-a-diploma

	1.1.1.2 Money
	a - Under threat or in full confidence
	b - Not infinite
	c - Transparency / accountability

	1.1.1.3 Authority

	1.1.2 CVE and statistics
	1.1.3 The embedding of computer security into things

	2 Fast paced computer security walkthrough
	2.1 Security properties
	2.2 Attacks categories
	2.2.1 The unknown
	2.2.2 The assumed

	2.3 Elements of cryptography
	2.3.1 Overall view of an encryption algorithm
	2.3.2 Symmetric ciphers
	2.3.2.1 Special cases

	2.3.3 Public key cryptography
	2.3.4 Cryptographic hash functions
	2.3.4.1 Cryptanalysis : evil activity or fruitful effort?
	2.3.4.2 SHA-3 & co.

	2.3.5 Signing
	2.3.6 Other topics

	2.4 Introduction to mandatory security policies
	2.4.1 Security models
	2.4.2 Mandatory and discretionay access control policies
	2.4.3 Discretionary access control policy modelling
	2.4.3.1 Models based on the access control matrix
	a - The HRU model
	b - The Take-Grant model
	c - TAM

	2.4.3.2 Role based access controle models

	2.4.4 Multilevel policies
	2.4.4.1 The DoD policy
	2.4.4.2 Biba integrity policy

	2.4.5 Information flow control policy
	2.4.6 Interface security models
	2.4.6.1 Deterministic systems: Non-interference
	2.4.6.2 Non-deterministic systems : Non-deducibility, Generalized non-interference, Restriction

	3 Embedded systems and security
	3.1 Specificities (or not)
	3.1.1 Definition attempts
	3.1.2 Security aspects
	3.1.3 Challenges

	3.2 Physical attacks
	3.3 TPM

	4 Software development and security
	4.1 Security requirements engineering
	4.1.1 Note on security updates
	4.1.2 Risk analysis

	4.2 Static verification and (secure) software development tools
	4.2.1 Source code analysis tools
	4.2.2 Code integrity

	4.3 Security Evaluation Criteria
	4.3.1 Security standards as criteria
	4.3.2 Common criteria / ISO 15408
	4.3.3 Note on DO-178C
	4.3.4 Alternatives

	4.4 Coding
	4.4.1 Frequent or knowledgeable attack classes
	4.4.1.1 Understanding buffer overflows
	4.4.1.2 Format strings
	4.4.1.3 Arithmetic overflow
	4.4.1.4 SQL Injection
	4.4.1.5 Code or input obfuscation
	4.4.1.6 Race conditions
	4.4.1.7 Awkward things

	4.4.2 Practical recommendations
	4.4.2.1 Design first
	a - Know common faults
	b - Do not stop there
	c - Architectural principles
	d - Especially APIs and protocols

	4.4.2.2 Obscurity does not help
	a - This paragraph should not need to be written

	4.4.2.3 Quality is security
	4.4.2.4 Multiple lines of protection are useful
	4.4.2.5 Quality guidelines
	a - Simple code
	b - Check errors
	c - Fix bug classes
	d - Take care to semantics

	4.4.2.6 Check user input
	4.4.2.7 Optimization and language
	4.4.2.8 Remove code

	5 Cases studies
	5.1 Wireless networks
	5.2 (Not so) New generation avionics systems
	5.3 Network appliances
	5.4 Mobile telephony
	5.5 Gaming devices

