ISAE Embedded systems master

Evaluation – Exercices and questions

28 january 2016

Computer security

Advice to students and supervisors : course documents (either furnished by the school or hand-written during oral courses by the student himself) are allowed during the examination, a standard calculator too (for calculation purposes only) and blank paper sheets for draft.

All other documents or media access are not allowed, unless direct explicit authorization from the session supervisor.

Please, write your answers on the document itself in the place reserved.

Student name and surname :

Part I (10 pts)

This first part consists of ten questions (1 pt per question) with multiple answers proposed among which you must select the appropriate one. Unless explicitly indicated, only one answer is the right one.

Attention, the following notation system will be used :

Right answer : 1 point added False answer : 0,25 point *removed* No answer : 0 point

Q1 What is the distinct advantage of positioning the computer security officer of a company inside its computing department ?

- □ He will explain the existing vulnerabilities to top level management under the wise supervision of the IT head .
- □ He will have his hands busy with actual software security updates deployment and be confronted to real issues.
- □ He will be easily available to provide technical advices to the various software projets managed by the IT division.
- □ He will have administrator-level credentials and be able to access all the files in the company under the control of the IT division.

Q2 In a buffer overflow exploitation code, why is it important to exit cleanly after taking control of the CPU execution path :

- \Box To prevent detection of the attack.
- □ Because a multiple steps attack will not work if some of the intermediate steps lead to faults catched by the OS.
- □ Because the hackers coding standard requires it.
- \Box Because we may freeze the whole computer if we do not.

 ${\bf Q3}$ What is the security mechanism needed to reach the upper half of the evaluation levels in normalized evaluation criteria :

- \Box A mandatory security policy.
- \Box A trusted execution path (SysRq).
- □ A discretionay security policy.
- \Box Lots of documentation.

Q4 A "%s" format should always be passed to printf() calls because :

- \Box it will display a better formatted user-level message ;
- \Box it makes the job of quality control people easier ;
- \Box it will prevent the program from crashing ;
- □ it may prevent the program from revealing internal data and memory layout.

Q5 At which step of the application development phase is it best to identify the needed security *mechanisms* :

- □ At the beginning of the development phase, when global requirements are declined into detailed specifications.
- □ During negociations with sub-contractors implementing them.
- □ At the integration phase when the development of the main software body is completed.
- \Box At the end of the system life, so users do not get too annoyed by security constraints.

Q6 Because *floating-point* numbers represent real numbers, it is often mistakenly assumed that they can represent any simple fraction exactly. Floating-point numbers are subject to representational limitations just as integers are, and binary floating-point numbers cannot represent all real numbers exactly, even if they can be represented in a small number of decimal digits. Noting that the decimal number 0.1 is a repeating fraction in binary and cannot be exactly represented as a binary floating-point number, consider the following code fragment.

```
void func(void) {
  for (float x = 0.1f; x <= 1.0f; x += 0.1f) {
    /*Some loop body */
  }
}</pre>
```

How many iterations will the above program fragment perform at execution ?

- \Box an unpredictable number
- \Box 10 iterations
- □ either 9 or 10 times, depending on the implementation
- \square 9 iterations

Q7 What is the information provided daily by a CERT (Computer Emergency Response Team) ?

- □ Information on computer software vulnerabilites.
- □ Information on the most agressive computer hacking teams.
- □ Emergency information in case of a general Internet failure due to attacks.
- □ Cyber-security awareness raising documents for the general public.

Q8 Given the vulnerabilities identified by cryptanalysts on the MD5 hash function, what would be the adequate advice to give to the developpers of the git source code management system which uses MD5 sums as identifiers of source files successive versions ?

- □ Replace MD5 by SHA3 for all future versions as a more secure identifier
- □ Replace MD5 by SHA3 and also implement mechanisms allowing to update past data and migrate it also to the more secure version
- □ Replace MD5 by full RSA signatures
- □ Stay as-is. MD5 is good for content based adressing and fast checking of different text files when so specific security property is needed.

Q9 Intelligence agencies analysts frequently gather information coming from several sources in order to obtain secret information. For example, they may find the destination of some navy ship starting with the fuel bay capacity, ship speed and bought food supplies. When doing so, analysts use :

- \Box interference
- \Box inference
- \Box covert channels
- □ psychology

Q10 Before the test date, questions, exercices and correction guidelines are only accessible by professors and supervisors. This rule is related to :

- \Box confidentiality
- □ integrity
- □ availability
- □ or *survivability*

Q11 On a computer system implementing the Bell La-Padula multilevel mandatory security policy, is it possible that there exists access rights and a owner associated to the files of the filesystem ?

- \Box YES
- \square NO

Bonus question What is the *worst* option from the security point of view :

- □ An application where all users have different identifiers but everyone uses a blank password in order to allow automatic access from another portal application.
- □ An application where all users share the same identifier and the same password (changed every year).
- □ An application with a hidden password that allows access for maintenance.
- \Box An application without any authentication at all.

Part II (10 pts)

This part is composed of five open questions (2 pts each). Please write down your answer *on this document* in the appropriate space.

Question 1

Give an original exemple of a computer security objective (i.e. a requirement) corresponding to an organization and the associated security rule (i.e. a mechanism) that can be proposed in order to help reach the desired objective.

Give another pair of examples corresponding to a piece of software.

NB : Do not simply reuse as is the examples proposed as illustration in the course. If needed for comprehension, provide a few hints of the kind of organization or software you envisaged (bank, hospital, army, phone chat software, RDBMS, word processor, etc.).

Context hint for the organization (optional)

Objective 1 (organization) :

Rule 1 (organization) :

Context hint for the software (optional)

Objective A (software) :

Rule A (software) :

Question 2

Give 4 examples of malicious faults, accidental faults or intentional (but non-malicious) faults (at least 1 one of each class).

Question 3

What are the advantages *and* drawbacks of using all the currently most commonly available algorithms of cryptography (i.e. : RSA for asymetric encryption, AES for symetric encryption and SHA3 as a secure hash function) and only them ?

Pros :

Cons :

Question 4

The CERT C Coding Standard documentation provides the following information and *non*-compliant code example with respect to the usage of the system() function, as well as an example of secure usage inside a POSIX environment.

«[...] The C Standard system() function executes a specified command by invoking an implementation-defined command processor, such as a UNIX shell or CMD. EXE in Microsoft Windows. [...removed for brevity...].

Use of the system() function can result in exploitable vulnerabilities, in the worst case allowing execution of arbitrary system commands. [...removed for brevity...]

Noncompliant Code Example

In this noncompliant code example, the system() function is used to execute any_cmd in the host environment. Invocation of a command processor is not required.

```
#include <string.h>
#include <stdlib.h>
enum { BUFFERSIZE = 512 };
void func(const char *input) {
    char cmdbuf[BUFFERSIZE];
    int len_wanted = snprintf(cmdbuf, BUFFERSIZE, "any_cmd '%s'",
    input);
    if (len_wanted >= BUFFERSIZE) {
        /* Handle error */
    } else if (len_wanted < 0) {
        /* Handle error */
    } else if (system(cmdbuf) == -1) {
        /* Handle error */
    }
}</pre>
```

[...removed for exam. purpose...]

Compliant Solution (POSIX)

In [the] compliant solution, the call to system() is replaced with a call to execve(). The exec family of functions do not use a full shell interpreter, so they are not vulnerable to command-injection attacks, such as the one illustrated in the noncompliant code example. [...]»

Explain how the above non-compliant code could be used to run a privileged command (like creating a new user account with somthing like «useradd caroline») if it is compiled and run with elevated privileges on a POSIX system in a context where a potential attacker can pass it an arbitrary string.

If possible, provide (possible) examples of the kind of input data an attacker could try to use to perform such an attack.

Question 4 answer :

Question 5

No need to enumerate all listed tools in details, but justify your choices.

your selection criteria.

Question 5 answer :